We consider non-linear operators constructed from rigid vector fields. In particular, we study (global) Gevrey and analytic regularity on the torus; this is particularly interesting since even in the linear case we have a different behaviour on the torus and locally in R^n. To this aim we compute the "transposed" of a non-linear operator constructed from rigid vector fields, giving then a result of global Gevrey and analytic regularity on the torus, by the method of majorant series.

Gevrey and analytic hypoellipticity on the torus for non-linear operators constructed from rigid vector fields

BOITI, Chiara
2007

Abstract

We consider non-linear operators constructed from rigid vector fields. In particular, we study (global) Gevrey and analytic regularity on the torus; this is particularly interesting since even in the linear case we have a different behaviour on the torus and locally in R^n. To this aim we compute the "transposed" of a non-linear operator constructed from rigid vector fields, giving then a result of global Gevrey and analytic regularity on the torus, by the method of majorant series.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11392/518059
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact