Establishing the nature of γ-ray bursts is one of the greatest challenges in high-energy astrophysics. The distribution of these bursts is isotropic across the sky, but inhomogeneous in space, with a deficit of faint bursts. It is currently unknown whether γ-ray bursts are produced in our Galaxy or at cosmological distances. The detection and identification of counterparts at other wavelengths are seen as crucial for resolving the origin of the events. Here we report the detection by the Beppo-SAX satellite of an X-ray 'afterglow', associated with the γ-ray burst of 28 February 1997 (GRB970228; ref. 3) - the first such detection for any γ-ray burst. The X- ray transient was found to contain a significant fraction of the total energy of the γ-ray burst and, following the initial detection eight hours after the main burst, faded within a few days with a power-law decay function. The rapid locating of this γ-ray burst instigated a multi-wavelength observational campaign that culminated in the identification of a fading optical transient in a position consistent with the X-ray transient reported here.

Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997

FRONTERA, Filippo;ZAVATTINI, Guido
1997

Abstract

Establishing the nature of γ-ray bursts is one of the greatest challenges in high-energy astrophysics. The distribution of these bursts is isotropic across the sky, but inhomogeneous in space, with a deficit of faint bursts. It is currently unknown whether γ-ray bursts are produced in our Galaxy or at cosmological distances. The detection and identification of counterparts at other wavelengths are seen as crucial for resolving the origin of the events. Here we report the detection by the Beppo-SAX satellite of an X-ray 'afterglow', associated with the γ-ray burst of 28 February 1997 (GRB970228; ref. 3) - the first such detection for any γ-ray burst. The X- ray transient was found to contain a significant fraction of the total energy of the γ-ray burst and, following the initial detection eight hours after the main burst, faded within a few days with a power-law decay function. The rapid locating of this γ-ray burst instigated a multi-wavelength observational campaign that culminated in the identification of a fading optical transient in a position consistent with the X-ray transient reported here.
1997
E., Costa; Frontera, Filippo; J., Heise; . ., .; Zavattini, Guido
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/516343
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 872
  • ???jsp.display-item.citation.isi??? 956
social impact