This paper reports on the use of the Modified Wöhler Curve Method (MWCM) applied along with the Theory of Critical Distances (TCD) to estimate fatigue lifetime of steel welded joints subjected to both uniaxial and multiaxial cyclic loading. In a recent work [1] we have proved that the above engineering method is highly accurate when calibrated by using standard fatigue curves characterised by a probability of survival equal to 50%. In order to better check its accuracy and reliability, in the present study our approach is systematically applied to a large amount of experimental data by calibrating it using standard fatigue curves having a probability of survival equal to 97.7%. This exercise allowed us to prove that the in-field application of such an engineering procedure results in estimates which fully comply, from a statistical point of view, with Eurocode 3’s recommendations. This result strongly supports the idea that our approach can safely be employed to perform the fatigue assessment of real mechanical assemblies, with the advantage over other existing methods that fatigue lifetime under any kind of fatigue loading can be estimated by simply post-processing linear-elastic Finite Element Models.

Eurocode 3’s standard curves and Theory of Critical Distances to estimate fatigue lifetime of steel weldments

SUSMEL, Luca
2007

Abstract

This paper reports on the use of the Modified Wöhler Curve Method (MWCM) applied along with the Theory of Critical Distances (TCD) to estimate fatigue lifetime of steel welded joints subjected to both uniaxial and multiaxial cyclic loading. In a recent work [1] we have proved that the above engineering method is highly accurate when calibrated by using standard fatigue curves characterised by a probability of survival equal to 50%. In order to better check its accuracy and reliability, in the present study our approach is systematically applied to a large amount of experimental data by calibrating it using standard fatigue curves having a probability of survival equal to 97.7%. This exercise allowed us to prove that the in-field application of such an engineering procedure results in estimates which fully comply, from a statistical point of view, with Eurocode 3’s recommendations. This result strongly supports the idea that our approach can safely be employed to perform the fatigue assessment of real mechanical assemblies, with the advantage over other existing methods that fatigue lifetime under any kind of fatigue loading can be estimated by simply post-processing linear-elastic Finite Element Models.
2007
Steel weldments; multiaxial fatigue; Theory of Critical Distances
File in questo prodotto:
File Dimensione Formato  
2007.scientific.net%2FKEM.348-349.21.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 335.75 kB
Formato Adobe PDF
335.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/495655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact