The Gargano Promontory of southern Italy, located on the eastern margin of the Apulia Platform, represents a peculiar Tethyan area where the transition between carbonate platform and adjacent basins is exposed on land. The Aptian stratigraphic record, represented in shallow-water, slope and deep-water deposits, provides a good opportunity to investigate the regional response to the worldwide documented climatic, biotic and palaeoceanographic changes related to Oceanic Anoxic Event 1a (OAE1a). A synthesis of data previously published (Ischitella and Coppitella sections), together with original data (Val Carbonara and Coppa della Guardia sections), from four stratigraphic sections from different depositional settings (proximal to distal) is provided, using an integrated, high-resolution micropalaeontological (planktonic foraminifera and calcareous nannofossils) and, for one section, geochemical (stable carbon and oxygen isotopes) approach. Organic matter preservation is confined to the more distal areas and consists of two thin intervals of black shales in the Aptian portion of the Marne a Fucoidi Formation. Biostratigraphic data assign the older black shale (5 cm thick) to the Selli Level equivalent (OAE1a, Lower Aptian); this carbon-rich interval is immediately followed by another black shale (7–10 cm thick) of early Late Aptian age. OAE1a is generally interpreted as a high-productivity event during a warming interval, followed by a cooling trend. In the Gargano Promontory, although the oxygen isotope curve indicates the above-mentioned climatic evolution, the micropalaeontological data do not support high fertility of the surface water, whereas micropalaeontological and geochemical data for the younger black shale do record high productivity (radiolarian increase in overall abundance, low nannofossil and foraminiferal species richness, increase in abudance of nannofossil fertility indices) associated with a cooling trend. The carbon and oxygen isotope record is in line with evidence from the curves documented elsewhere, whereas, among the biotic events, only the “nannoconid crisis” preceding OAE1a is revealed to be globally correlable. Environmental models for the two episodes of organic matter preservation are proposed, taking into account both global and local controlling factors.

Regional record of a global oceanic anoxic event: OAE1a on the Apulia Platform margin, Gargano Promontory, southern Italy

LUCIANI, Valeria
Primo
;
2006

Abstract

The Gargano Promontory of southern Italy, located on the eastern margin of the Apulia Platform, represents a peculiar Tethyan area where the transition between carbonate platform and adjacent basins is exposed on land. The Aptian stratigraphic record, represented in shallow-water, slope and deep-water deposits, provides a good opportunity to investigate the regional response to the worldwide documented climatic, biotic and palaeoceanographic changes related to Oceanic Anoxic Event 1a (OAE1a). A synthesis of data previously published (Ischitella and Coppitella sections), together with original data (Val Carbonara and Coppa della Guardia sections), from four stratigraphic sections from different depositional settings (proximal to distal) is provided, using an integrated, high-resolution micropalaeontological (planktonic foraminifera and calcareous nannofossils) and, for one section, geochemical (stable carbon and oxygen isotopes) approach. Organic matter preservation is confined to the more distal areas and consists of two thin intervals of black shales in the Aptian portion of the Marne a Fucoidi Formation. Biostratigraphic data assign the older black shale (5 cm thick) to the Selli Level equivalent (OAE1a, Lower Aptian); this carbon-rich interval is immediately followed by another black shale (7–10 cm thick) of early Late Aptian age. OAE1a is generally interpreted as a high-productivity event during a warming interval, followed by a cooling trend. In the Gargano Promontory, although the oxygen isotope curve indicates the above-mentioned climatic evolution, the micropalaeontological data do not support high fertility of the surface water, whereas micropalaeontological and geochemical data for the younger black shale do record high productivity (radiolarian increase in overall abundance, low nannofossil and foraminiferal species richness, increase in abudance of nannofossil fertility indices) associated with a cooling trend. The carbon and oxygen isotope record is in line with evidence from the curves documented elsewhere, whereas, among the biotic events, only the “nannoconid crisis” preceding OAE1a is revealed to be globally correlable. Environmental models for the two episodes of organic matter preservation are proposed, taking into account both global and local controlling factors.
Luciani, Valeria; Cobianchi, M; Lupi, C.
File in questo prodotto:
File Dimensione Formato  
Luciani et al. 2006 CR.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/494760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 49
social impact