A variety of harmful stimuli, among them energy depletion occurring during transient brain ischemia, are thought to unbalance protein kinase cascades, ultimately leading to neuronal damage. In superfused, electrically stimulated rat cerebral cortex slices, chemical ischemia (CI) was induced by a 5-min treatment with the mitochondrial toxin, sodium azide (10 mM), combined with the glycolysis blocker, 2-deoxyglucose (2 mM). Thereafter, 1 h reperfusion (REP) with normal medium followed. Western blot analysis of p21Ras, extracellular signal-regulated protein kinases (ERK)1/2 (p44/42), phospho- ERK1/2, mitogen-activated protein kinase (MAPK)-p38, phospho-p38, stress-activated protein kinases/c-Jun NH2-terminal protein kinases (SAPK/JNK), phospho-SAPK/JNK was carried out. The level of p21Ras was increased by 40% immediately after CI, and did not return to control values following REP. Both ERK1 and ERK2 levels were reduced by CI and recovered to control values following REP; no significant change in their phosphorylation degree (phosphorylated to total level ratio, about 50% in the controls) was observed. Neither p38 levels, nor phosphorylation degreewere changed following CI/REP. The activation ofSAPK/JNK was significantly reduced under CI, and did not recover following REP. All CI/REP-induced effects were prevented by the NMDA receptor antagonist MK-801, 10 M, suggesting the involvement of glutamate. The present findings show that although CI stimulates the p21Ras protein, MAPK levels and/or posphorylation are reduced, possibly because of acute energy depletion. Because the activation of SAPK/JNK has been related to both apoptosis and neuroprotection, the decrease observed under CI/REP conditions may instead be related to nonapoptotic neuronal death. These results could be of interest in developing preventive treatments for ischemia/REP-induced brain damage.

Effects of chemical ischemia on cerebral cortex slices: focus on mitogen-activated protein kinase cascade.

SINISCALCHI, Anna;CAVALLINI, Sabrina;MARINO, Silvia;FALZARANO, Maria Sofia;FRANCESCHETTI, Lara;SELVATICI, Rita
2006

Abstract

A variety of harmful stimuli, among them energy depletion occurring during transient brain ischemia, are thought to unbalance protein kinase cascades, ultimately leading to neuronal damage. In superfused, electrically stimulated rat cerebral cortex slices, chemical ischemia (CI) was induced by a 5-min treatment with the mitochondrial toxin, sodium azide (10 mM), combined with the glycolysis blocker, 2-deoxyglucose (2 mM). Thereafter, 1 h reperfusion (REP) with normal medium followed. Western blot analysis of p21Ras, extracellular signal-regulated protein kinases (ERK)1/2 (p44/42), phospho- ERK1/2, mitogen-activated protein kinase (MAPK)-p38, phospho-p38, stress-activated protein kinases/c-Jun NH2-terminal protein kinases (SAPK/JNK), phospho-SAPK/JNK was carried out. The level of p21Ras was increased by 40% immediately after CI, and did not return to control values following REP. Both ERK1 and ERK2 levels were reduced by CI and recovered to control values following REP; no significant change in their phosphorylation degree (phosphorylated to total level ratio, about 50% in the controls) was observed. Neither p38 levels, nor phosphorylation degreewere changed following CI/REP. The activation ofSAPK/JNK was significantly reduced under CI, and did not recover following REP. All CI/REP-induced effects were prevented by the NMDA receptor antagonist MK-801, 10 M, suggesting the involvement of glutamate. The present findings show that although CI stimulates the p21Ras protein, MAPK levels and/or posphorylation are reduced, possibly because of acute energy depletion. Because the activation of SAPK/JNK has been related to both apoptosis and neuroprotection, the decrease observed under CI/REP conditions may instead be related to nonapoptotic neuronal death. These results could be of interest in developing preventive treatments for ischemia/REP-induced brain damage.
2006
Siniscalchi, Anna; Cavallini, Sabrina; Marino, Silvia; Falzarano, Maria Sofia; Franceschetti, Lara; Selvatici, Rita
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/471486
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact