In this paper we deal with the Dirichlet problem for the Laplace equation in a plane exterior domain $\Omega$ with a Lipschitz boundary. We prove that, if the boundary datum $a$ is square summable, then the problem admits a solution which tends to $a$ in the sense of nontangential convergence, is unique in a suitable function class and vanishes at infinity as $r^{-k}$ if and only if $a$ satisfies $k$ compatibility conditions, which we are able to explicit when $\Omega$ is the exterior of an ellipse.

Some Remarks on the Dirichlet Problem in Plane Exterior Domains

COSCIA, Vincenzo;
2007

Abstract

In this paper we deal with the Dirichlet problem for the Laplace equation in a plane exterior domain $\Omega$ with a Lipschitz boundary. We prove that, if the boundary datum $a$ is square summable, then the problem admits a solution which tends to $a$ in the sense of nontangential convergence, is unique in a suitable function class and vanishes at infinity as $r^{-k}$ if and only if $a$ satisfies $k$ compatibility conditions, which we are able to explicit when $\Omega$ is the exterior of an ellipse.
2007
Coscia, Vincenzo; Russo, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/470293
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact