In the paper, neuro-fuzzy systems (NFSs) for gas turbine diagnostics are studied and developed. The same procedure used previously for the setup of neural network (NN) models (Bettocchi, R., Pinelli, M., Spina, P. R., and Venturini, M., 2007, ASME J. Eng. Gas Turbines Power, 129(3), pp. 711-719) was used. In particular, the same database of patterns was used for both training and testing the NFSs. This database was obtained by running a cycle program, calibrated on a 255 MW single-shaft gas turbine working in the ENEL combined cycle power plant of La Spezia (Italy). The database contains the variations of the Health Indices (which are the characteristic parameters that are indices of gas turbine health state, such as efficiencies and characteristic flow passage areas of compressor and turbine) and the corresponding variations of the measured quantities with respect to the values in new and clean conditions. The analyses carried out are aimed at the selection of the most appropriate NFS structure for gas turbine diagnostics, in terms of computational time of the NFS training phase, accuracy, and robustness towards measurement uncertainty during simulations. In particular, adaptive neuro-fuzzy inference system (ANFIS) architectures were considered and tested, and their performance was compared to that obtainable by using the NN models. An analysis was also performed in order to identify the most significant ANFIS inputs. The results obtained show that ANFISs are robust with respect to measurement uncertainty, and, in all the cases analyzed, the performance (in terms of accuracy during simulations and time spent for the training phase) proved to be better than that obtainable by multi-input/multioutput (MIMO) and multi-input/single-output (MISO) neural networks trained and tested on the same data.

Artificial Intelligence for the Diagnostics of Gas Turbines. Part II: Neuro-Fuzzy Approach

BETTOCCHI, Roberto;PINELLI, Michele;SPINA, Pier Ruggero;VENTURINI, Mauro
2007

Abstract

In the paper, neuro-fuzzy systems (NFSs) for gas turbine diagnostics are studied and developed. The same procedure used previously for the setup of neural network (NN) models (Bettocchi, R., Pinelli, M., Spina, P. R., and Venturini, M., 2007, ASME J. Eng. Gas Turbines Power, 129(3), pp. 711-719) was used. In particular, the same database of patterns was used for both training and testing the NFSs. This database was obtained by running a cycle program, calibrated on a 255 MW single-shaft gas turbine working in the ENEL combined cycle power plant of La Spezia (Italy). The database contains the variations of the Health Indices (which are the characteristic parameters that are indices of gas turbine health state, such as efficiencies and characteristic flow passage areas of compressor and turbine) and the corresponding variations of the measured quantities with respect to the values in new and clean conditions. The analyses carried out are aimed at the selection of the most appropriate NFS structure for gas turbine diagnostics, in terms of computational time of the NFS training phase, accuracy, and robustness towards measurement uncertainty during simulations. In particular, adaptive neuro-fuzzy inference system (ANFIS) architectures were considered and tested, and their performance was compared to that obtainable by using the NN models. An analysis was also performed in order to identify the most significant ANFIS inputs. The results obtained show that ANFISs are robust with respect to measurement uncertainty, and, in all the cases analyzed, the performance (in terms of accuracy during simulations and time spent for the training phase) proved to be better than that obtainable by multi-input/multioutput (MIMO) and multi-input/single-output (MISO) neural networks trained and tested on the same data.
2007
Bettocchi, Roberto; Pinelli, Michele; Spina, Pier Ruggero; Venturini, Mauro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/470113
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact