In the paper, neural network (NN) models for gas turbine diagnostics are studied and developed. The analyses carried out are aimed at the selection of the most appropriate NN structure for gas turbine diagnostics, in terms of computational time of the NN training phase, accuracy, and robustness with respect to measurement uncertainty. In particular, feed-forward NNs with a single hidden layer trained by using a backpropagation learning algorithm are considered and tested. Moreover, multi-input/multioutput NN architectures (i.e., NNs calculating all the system outputs) are compared to multi-input/single-output NNs, each of them calculating a single output of the system. The results obtained show that NNs are sufficiently robust with respect to measurement uncertainty, if a sufficient number of training patterns are used. Moreover, multi-input/multioutput NNs trained with data corrupted with measurement errors seem to be the best compromise between the computational time required for NN training phase and the NN accuracy in performing gas turbine diagnostics.
Artificial Intelligence for the Diagnostics of Gas Turbines. Part I: Neural Network Approach
BETTOCCHI, Roberto;PINELLI, Michele;SPINA, Pier Ruggero;VENTURINI, Mauro
2007
Abstract
In the paper, neural network (NN) models for gas turbine diagnostics are studied and developed. The analyses carried out are aimed at the selection of the most appropriate NN structure for gas turbine diagnostics, in terms of computational time of the NN training phase, accuracy, and robustness with respect to measurement uncertainty. In particular, feed-forward NNs with a single hidden layer trained by using a backpropagation learning algorithm are considered and tested. Moreover, multi-input/multioutput NN architectures (i.e., NNs calculating all the system outputs) are compared to multi-input/single-output NNs, each of them calculating a single output of the system. The results obtained show that NNs are sufficiently robust with respect to measurement uncertainty, if a sufficient number of training patterns are used. Moreover, multi-input/multioutput NNs trained with data corrupted with measurement errors seem to be the best compromise between the computational time required for NN training phase and the NN accuracy in performing gas turbine diagnostics.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.