As the greenhouse effect increases, the development of systems able to convert with high efficiency CO2 to energetically rich molecules owns a crucial weight in the technological and environmental domain. As catalyst, rhenium complexes, of the type fac-[Re(L)(CO)(3)Cl] (i.e. L = 2,2'-bipyridyl or 4,4'-bipyridyl), have attracted a large interest demonstrating promising catalytic properties. fac-[Re(v-bpy)(CO)(3)Cl]-based polymer deposited onto a solid support has been already investigated as heterogeneous catalyst in the reduction of CO2. Here, we deposited by electrochemical polymerization fac-[Re(v-bpy)(CO)(3)Cl] onto a nanocrystalline TiO2 film on glass and we investigated by cyclic voltammetry the properties of such heterogeneous catalyst in the electrochemical reduction of CO2. We demonstrated that the nanoporous nature of the substrate allows to increase the two-dimensional number of redox sites per surface area and hence to get a significant enhancement of the catalytic yield.

Efficiency enhancement of the electrocatalytic reduction of CO2: fac-[Re(v-bpy)(CO)3Cl] electropolymerized onto mesoporous TiO2 electrodes.

ALEBBI, Monica;BIGNOZZI, Carlo Alberto;
2006

Abstract

As the greenhouse effect increases, the development of systems able to convert with high efficiency CO2 to energetically rich molecules owns a crucial weight in the technological and environmental domain. As catalyst, rhenium complexes, of the type fac-[Re(L)(CO)(3)Cl] (i.e. L = 2,2'-bipyridyl or 4,4'-bipyridyl), have attracted a large interest demonstrating promising catalytic properties. fac-[Re(v-bpy)(CO)(3)Cl]-based polymer deposited onto a solid support has been already investigated as heterogeneous catalyst in the reduction of CO2. Here, we deposited by electrochemical polymerization fac-[Re(v-bpy)(CO)(3)Cl] onto a nanocrystalline TiO2 film on glass and we investigated by cyclic voltammetry the properties of such heterogeneous catalyst in the electrochemical reduction of CO2. We demonstrated that the nanoporous nature of the substrate allows to increase the two-dimensional number of redox sites per surface area and hence to get a significant enhancement of the catalytic yield.
2006
F., Cecchet; Alebbi, Monica; Bignozzi, Carlo Alberto; F., Paolucci
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/470006
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 55
social impact