In the present paper we have defined putative functional domains of the ryanodine receptor Ca2+ channel. cDNA fragments of the skeletal muscle ryanodine receptor were fused in-frame with the Escherichia coli trpe protein and the resulting fusion proteins were evaluated for their ability to react with anti-(ryanodine receptor) antibodies, which are known to block Ca(2+)-dependent activation of the Ca(2+)-release channel. Anti-(ryanodine receptor) antibodies react with epitopes lying within a 245-amino-acid-long polypeptide which is located in a region (residues 4380-4625) encompassing most of myoplasmic loop 2, the predicted transmembrane segment M5 and part of the next lumenal loop (45 residues). Purification of the anti-(ryanodine receptor) antibodies by affinity chromatography led to the isolation of a population of antibodies which was capable of decreasing (by > 30%) the doxorubicin-induced Ca2+ release from isolated terminal cisternae. Polyclonal antibodies raised against a ryanodine receptor fusion encompassing part (198 out of 245 residues) of the immunopositive polypeptide decreased by 2-fold the first-order rate constant of Ca(2+)-induced 45Ca2+ efflux from isolated terminal cisternae. These results suggest strongly that the Ca(2+)-activating domain of the skeletal muscle Ca(2+)-release channel is close to, or associated with, myoplasmic loop 2

Identification of the domain recognized by anti-(ryanodine receptor) antibodies which affect Ca2+-induced Ca2+ release

TREVES, Susan Nella;ZORZATO, Francesco
1993

Abstract

In the present paper we have defined putative functional domains of the ryanodine receptor Ca2+ channel. cDNA fragments of the skeletal muscle ryanodine receptor were fused in-frame with the Escherichia coli trpe protein and the resulting fusion proteins were evaluated for their ability to react with anti-(ryanodine receptor) antibodies, which are known to block Ca(2+)-dependent activation of the Ca(2+)-release channel. Anti-(ryanodine receptor) antibodies react with epitopes lying within a 245-amino-acid-long polypeptide which is located in a region (residues 4380-4625) encompassing most of myoplasmic loop 2, the predicted transmembrane segment M5 and part of the next lumenal loop (45 residues). Purification of the anti-(ryanodine receptor) antibodies by affinity chromatography led to the isolation of a population of antibodies which was capable of decreasing (by > 30%) the doxorubicin-induced Ca2+ release from isolated terminal cisternae. Polyclonal antibodies raised against a ryanodine receptor fusion encompassing part (198 out of 245 residues) of the immunopositive polypeptide decreased by 2-fold the first-order rate constant of Ca(2+)-induced 45Ca2+ efflux from isolated terminal cisternae. These results suggest strongly that the Ca(2+)-activating domain of the skeletal muscle Ca(2+)-release channel is close to, or associated with, myoplasmic loop 2
1993
Treves, Susan Nella; P., Chiozzi; Zorzato, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/463581
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 31
social impact