Cytotoxic T lymphocytes (CTLs) control viral infections by recognizing viral peptides presented by major histocompatibility complex (MHC) class I molecules. Human leukocyte antigen (HLA)-A11-restricted CTLs that recognize peptide residues 416 to 424 of the Epstein-Barr virus (EBV) nuclear antigen-4 frequently dominate EBV-induced responses in A11+ Caucasian donors. This epitope is conserved in type A EBV strains from Caucasians and central African populations, where A11 is relatively infrequent. However, strains from highly A11+ populations in New Guinea carry a lysine-to-threonine mutation at residue 424 that abrogates CTL recognition and binding of the peptide to nascent A11 molecules. The results suggest that evolution of a widespread and genetically stable virus such as EBV is influenced by pressure from MHC-restricted CTL responses.
HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population
GAVIOLI, Riccardo;
1993
Abstract
Cytotoxic T lymphocytes (CTLs) control viral infections by recognizing viral peptides presented by major histocompatibility complex (MHC) class I molecules. Human leukocyte antigen (HLA)-A11-restricted CTLs that recognize peptide residues 416 to 424 of the Epstein-Barr virus (EBV) nuclear antigen-4 frequently dominate EBV-induced responses in A11+ Caucasian donors. This epitope is conserved in type A EBV strains from Caucasians and central African populations, where A11 is relatively infrequent. However, strains from highly A11+ populations in New Guinea carry a lysine-to-threonine mutation at residue 424 that abrogates CTL recognition and binding of the peptide to nascent A11 molecules. The results suggest that evolution of a widespread and genetically stable virus such as EBV is influenced by pressure from MHC-restricted CTL responses.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.