The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device’s performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations. The experimental results indicate that the presence of Li+ leads to a ca. 100 mV positive shift in the potential of NiO, which is in good agreement with what is theoretically predicted (ca. 180 mV). Moreover, both experiments and calculations pinpoint that the presence of Li+ at the interface weakens the bonds between C343 and NiO, resulting in an accelerated desorption of the dye from the substrate. Computational remodeling of C343@NiO interfaces in the presence and absence of lithium salts (LiF) confirms that the interfacial energetics are very sensitive to the dynamical structure of C343@NiO and to the presence of anionic/cationic species. Indeed, although the presence of lithium at the interface has only a minor impact on the potential difference between NiO and the dye, it significantly influences the electronic coupling between the two interfacial components. This, in turn, leads to variations in the interfacial hole transfer rates.

The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations. The experimental results indicate that the presence of Li+ leads to a ca. 100 mV positive shift in the potential of NiO, which is in good agreement with what is theoretically predicted (ca. 180 mV). Moreover, both experiments and calculations pinpoint that the presence of Li+ at the interface weakens the bonds between C343 and NiO, resulting in an accelerated desorption of the dye from the substrate. Computational remodeling of C343@NiO interfaces in the presence and absence of lithium salts (LiF) confirms that the interfacial energetics are very sensitive to the dynamical structure of C343@NiO and to the presence of anionic/cationic species. Indeed, although the presence of lithium at the interface has only a minor impact on the potential difference between NiO and the dye, it significantly influences the electronic coupling between the two interfacial components. This, in turn, leads to variations in the interfacial hole transfer rates.

Exploring the Impact of Ionic Additives on the Structure and Energetics of Dye-Sensitized NiO Interfaces: Insights from Electrochemistry and First-Principles Calculations

Alekos Segalina;Rita Boaretto
Membro del Collaboration Group
;
Stefano Caramori
Investigation
;
Mariachiara Pastore
Writing – Review & Editing
2025

Abstract

The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations. The experimental results indicate that the presence of Li+ leads to a ca. 100 mV positive shift in the potential of NiO, which is in good agreement with what is theoretically predicted (ca. 180 mV). Moreover, both experiments and calculations pinpoint that the presence of Li+ at the interface weakens the bonds between C343 and NiO, resulting in an accelerated desorption of the dye from the substrate. Computational remodeling of C343@NiO interfaces in the presence and absence of lithium salts (LiF) confirms that the interfacial energetics are very sensitive to the dynamical structure of C343@NiO and to the presence of anionic/cationic species. Indeed, although the presence of lithium at the interface has only a minor impact on the potential difference between NiO and the dye, it significantly influences the electronic coupling between the two interfacial components. This, in turn, leads to variations in the interfacial hole transfer rates.
2025
Segalina, Alekos; Boaretto, Rita; Caramori, Stefano; Piccinin, Simone; Pastore, Mariachiara
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2614094
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact