In this work,we integrate the predictive capabilities of compartmental disease dynamics models with machine learning’s ability to analyze complex, high-dimensional data and uncover patterns that conventional models may overlook. Specifically, we present a proof of concept demonstrating the application of data-driven methods and deep neural networks to a recently introduced Susceptible-Infected-Recovered type model with social features, including a saturated incidence rate, to improve epidemic prediction and forecasting. Our results show that a robust data augmentation strategy trough suitable data-driven models can improve the reliability of Feed-Forward Neural Networks and Nonlinear Autoregressive Networks, providing a complementary strategy to Physics-Informed Neural Networks, particularly in settings where data augmentation from mechanistic models can enhance learning. This approach enhances the ability to handle nonlinear dynamics and offers scalable, data-driven solutions for epidemic forecasting, prioritizing predictive accuracy over the constraints of physics-based models. Numerical simulations of the lockdown and post-lockdown phase of the COVID-19 epidemic in Italy and Spain validate our methodology.

In this work, we integrate the predictive capabilities of compartmental disease dynamics models with machine learning’s ability to analyze complex, high-dimensional data and uncover patterns that conventional models may overlook. Specifically, we present a proof of concept demonstrating the application of data-driven methods and deep neural networks to a recently introduced Susceptible-Infected-Recovered type model with social features, including a saturated incidence rate, to improve epidemic prediction and forecasting. Our results show that a robust data augmentation strategy trough suitable data-driven models can improve the reliability of Feed-Forward Neural Networks and Nonlinear Autoregressive Networks, providing a complementary strategy to Physics-Informed Neural Networks, particularly in settings where data augmentation from mechanistic models can enhance learning. This approach enhances the ability to handle nonlinear dynamics and offers scalable, data-driven solutions for epi...

A data augmentation strategy for deep neural networks with application to epidemic modelling

Ferrarese F
;
2025

Abstract

In this work, we integrate the predictive capabilities of compartmental disease dynamics models with machine learning’s ability to analyze complex, high-dimensional data and uncover patterns that conventional models may overlook. Specifically, we present a proof of concept demonstrating the application of data-driven methods and deep neural networks to a recently introduced Susceptible-Infected-Recovered type model with social features, including a saturated incidence rate, to improve epidemic prediction and forecasting. Our results show that a robust data augmentation strategy trough suitable data-driven models can improve the reliability of Feed-Forward Neural Networks and Nonlinear Autoregressive Networks, providing a complementary strategy to Physics-Informed Neural Networks, particularly in settings where data augmentation from mechanistic models can enhance learning. This approach enhances the ability to handle nonlinear dynamics and offers scalable, data-driven solutions for epi...
2025
Awais, M; Ali, A S; Dimarco, G; Ferrarese, F; Pareschi, L
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2605051
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact