The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. Γ-convergence results and related representation theorems in terms of L∞ functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).

Approximation of L∞ functionals with generalized Orlicz norms

Bertazzoni, Giacomo
Primo
;
2025

Abstract

The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. Γ-convergence results and related representation theorems in terms of L∞ functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).
2025
Bertazzoni, Giacomo; Eleuteri, Michela; Zappale, Elvira
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2603692
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact