We show that the maximal Cheeger set of a Jordan domain Ω without necks is the union of all balls of radius r= h(Ω)^{-1} contained in Ω. Here, h(Ω) denotes the Cheeger constant of Ω , that is, the infimum of the ratio of perimeter over area among subsets of Ω , and a Cheeger set is a set attaining the infimum. The radius r is shown to be the unique number such that the area of the inner parallel set Ω^r is equal to πr^2. The proof of the main theorem requires the combination of several intermediate facts, some of which are of interest in their own right. Examples are given demonstrating the generality of the result as well as the sharpness of our assumptions. In particular, as an application of the main theorem, we illustrate how to effectively approximate the Cheeger constant of the Koch snowflake.

The Cheeger constant of a Jordan domain without necks

Saracco G.
2017

Abstract

We show that the maximal Cheeger set of a Jordan domain Ω without necks is the union of all balls of radius r= h(Ω)^{-1} contained in Ω. Here, h(Ω) denotes the Cheeger constant of Ω , that is, the infimum of the ratio of perimeter over area among subsets of Ω , and a Cheeger set is a set attaining the infimum. The radius r is shown to be the unique number such that the area of the inner parallel set Ω^r is equal to πr^2. The proof of the main theorem requires the combination of several intermediate facts, some of which are of interest in their own right. Examples are given demonstrating the generality of the result as well as the sharpness of our assumptions. In particular, as an application of the main theorem, we illustrate how to effectively approximate the Cheeger constant of the Koch snowflake.
2017
Leonardi, G. P.; Neumayer, R.; Saracco, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2596835
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact