We show that the characterization of existence and uniqueness up to vertical translations of solutions to the prescribed mean curvature equation, originally proved by Giusti in the smooth case, holds true for domains satisfying very mild regularity assumptions. Our results apply in particular to the non-parametric solutions of the capillary problem for perfectly wetting fluids in zero gravity. Among the essential tools used in the proofs, we mention a generalized Gauss–Green theorem based on the construction of the weak normal trace of a vector field with bounded divergence, in the spirit of classical results due to Anzellotti, and a weak Young’s law for (Λ , r_0)-minimizers of the perimeter.

The prescribed mean curvature equation in weakly regular domains

Saracco G.
2018

Abstract

We show that the characterization of existence and uniqueness up to vertical translations of solutions to the prescribed mean curvature equation, originally proved by Giusti in the smooth case, holds true for domains satisfying very mild regularity assumptions. Our results apply in particular to the non-parametric solutions of the capillary problem for perfectly wetting fluids in zero gravity. Among the essential tools used in the proofs, we mention a generalized Gauss–Green theorem based on the construction of the weak normal trace of a vector field with bounded divergence, in the spirit of classical results due to Anzellotti, and a weak Young’s law for (Λ , r_0)-minimizers of the perimeter.
2018
Leonardi, G. P.; Saracco, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2596834
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact