Given an open, bounded set Ω in R^n, we consider the minimization of the anisotropic Cheeger constant h_K (Ω) with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if Ω is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.

Optimization of the anisotropic Cheeger constant with respect to the anisotropy

Saracco G.
Ultimo
2023

Abstract

Given an open, bounded set Ω in R^n, we consider the minimization of the anisotropic Cheeger constant h_K (Ω) with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if Ω is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.
2023
Parini, E.; Saracco, G.
File in questo prodotto:
File Dimensione Formato  
2023 - Optimization of the anisotropic Cheeger constant with respect to the anisotropy - Parini, Saracco.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 364.92 kB
Formato Adobe PDF
364.92 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2596780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact