Meeting global energy requirement sustainably is a major challenge today due to increasing demand, rising costs and environmental concerns. Currently, fossil fuels like coal, oil, and natural gas are the primary energy sources, but contribute to pollution, climate change, and resource depletion, escalating costs and geopolitical tensions. Solar energy stands out as the most promising long-term alternative, providing an inexhaustible and widely distributed resource. This growing interest in solar energy includes technologies for converting sunlight into solar fuels (e.g., H2), for water or air decontamination and disinfection, and for environmentally friendly waste valorisation. Solar energy can be converted into electricity or fuels through semiconducting materials that absorb light and enable redox reactions in photoelectrochemical cells. The thesis is divided into two sections: the first (Chapters 1-4) focuses on the optimisation of an n-type semiconductor for redox processes, applied to waste biomass valorisation and water decontamination. The second (Chapters 5-6) explores proton-coupled electron transfer (PCET), a redox process involved in biological systems, to promote water oxidation. Chapter 1 provides an overview of semiconductors and photoelectrochemistry, focusing on photoelectrochemical water splitting, environmental remediation, and waste valorisation using n-type semiconductors. Chapter 2 outlines the aim of the first section, including the optimization of hematite-based photoanodes and their use in promoting redox processes. Chapter 3 discusses the optimization of hematite-based photoanodes' key features affecting photoelectrochemical performance, such as hydrothermal synthesis time, temperature, and pressure, and doping with Ti(IV)-based compounds like MXenes. The optimization led to the creation of standard hematite electrodes, whose properties were studied using SEM, EDS, XRD, and UV-VIS analyses, and their photoelectrochemical performance was assessed through J-V profiles and IPCE under simulated solar illumination. Chapter 4 discusses the applications of hematite-based photoanodes in redox processes. In paragraph 4.1, these electrodes were used in a photoelectrochemical cell to oxidize Sodium Dodecyl Sulphate (SDS) while storing solar energy as hydrogen. Photoluminescence radical detection revealed that SDS degradation occurred via OH• radicals. EIS showed selectivity for SDS degradation, likely due to adsorption on the electrode surface. GC analysis confirmed the production of both H2 and CO2, demonstrating successful SDS mineralization and solar fuel generation. In paragraph 4.2, hematite photoanodes were used to photo-oxidize 5-hydroxymethylfurfural into furan dicarboxylic acid (FDCA) in aqueous environment. Performance was improved by coating the electrodes with Co-based catalysts, such as cobalt iron oxide (CoFeOx) and cobalt phosphate (CoPi). The CoPi-modified electrode achieved 86% FDCA yield, compared to 54% of bare hematite. This improvement was due to the catalyst effect on charge carrier dynamics, analysed by EIS and IMPS. Paragraph 4.3 outlines the scaling-up of hematite photoanodes for a lab-scale PEC cell for CO2 reduction and biomass valorisation. The photoanodes were scaled from 1 cm2 to 25 cm², showing reproducible electrode responses, good stability, and photocurrent densities of ca. 37 mA, that will be used in the final demonstrator. Chapter 5 overviews proton-coupled electron transfer (PCET), focusing on the mechanism and thermodynamics of these reactions. Chapter 6 explores the electron transfer dynamics of a molecular water oxidation catalyst, [Ru(tpy)(bpy’)(H2O)]2+, anchored to an ITO thin film, and characterizes its PCET process spectroscopically and electrochemically. The results showed that PCET reactions were enhanced by buffers, lowering the overpotential for RuIV=O generation and improving kinetics.
Soddisfare in modo sostenibile la richiesta energetica globale è una delle maggiori sfide odierne, a causa dell’aumento della domanda, dei crescenti costi e preoccupazioni ambientali. Attualmente, i combustibili fossili come carbone, petrolio e gas naturale sono le principali fonti di energia, ma contribuiscono a inquinamento, cambiamenti climatici e depauperamento delle risorse, aumentando costi e tensioni geopolitiche. L'energia solare emerge come l'alternativa più promettente a lungo termine, offrendo una risorsa inesauribile e ampiamente distribuita. Questo crescente interesse per l'energia solare include tecnologie per convertire la luce solare in combustibili solari (ad esempio, H2), per la disinfezione di acqua o aria e la valorizzazione ecocompatibile dei rifiuti. L'energia solare può essere convertita in elettricità o combustibili tramite materiali semiconduttori che assorbono luce e consentono reazioni redox in celle fotoelettrochimiche. La tesi è divisa in due sezioni: la prima (Capitoli 1-4) si concentra sull’ottimizzazione di semiconduttori di tipo n per processi redox, applicati alla valorizzazione della biomassa di scarto e alla decontaminazione dell’acqua. La seconda (Capitoli 5-6) esplora il trasferimento di elettroni accoppiato a protoni (PCET), utilizzato per promuovere l’ossidazione dell’acqua. Il Capitolo 1 fornisce una panoramica sui semiconduttori di tipo n e la fotoelettrochimica, con applicazioni nella scissione dell’acqua, bonifica ambientale e valorizzazione dei rifiuti. Il Capitolo 2 descrive gli obiettivi della prima sezione, inclusa l’ottimizzazione dei fotoanodi a base di ematite impiegati in processi redox. Il Capitolo 3 discute l’ottimizzazione dei fotoanodi di ematite, inclusi i parametri di sintesi idrotermale (tempo, temperatura e pressione), e il doping con composti a base di Ti(IV), come i MXeni. Gli elettrodi ottimizzati sono stati analizzati con SEM, EDS, XRD e UV-VIS e testati in termini di performance fotoelettrochimiche. Il Capitolo 4 esplora le applicazioni degli elettrodi di ematite. Nel paragrafo 4.1, i fotoanodi sono stati usati in una cella PEC per ossidare il sodio dodecil solfato (SDS) e immagazzinare l’energia solare come idrogeno. La fotoluminescenza ha rivelato la degradazione radicalica del SDS, mentre l'EIS ha mostrato la selettività del processo, dovuta all'adsorbimento sulla superficie dell'elettrodo. L'analisi GC ha confermato la produzione di H2 e CO2, indicando la mineralizzazione del SDS e la generazione del combustibile solare. Il paragrafo 4.2 tratta della fotoossidazione del 5-idrossimetilfurfurale in acido furan-dicarbossilico (FDCA) ad opera di fotoanodi di ematite, migliorata dal rivestimento con catalizzatori a base di Co. Gli elettrodi modificati con Cobalto fosfato hanno generato una resa dell’86% di FDCA, rispetto al 54% di sola ematite. Il miglioramento è attribuibile all'effetto del catalizzatore sulla dinamica dei portatori di carica, analizzata mediante EIS e IMPS. Il paragrafo 4.3 descrive lo scale-up dei fotoanodi a base di ematite per una cella PEC su scala laboratoriale per la riduzione della CO2 e la valorizzazione della biomassa. I fotoanodi sono stati scalati da 1 cm² a 25 cm², mostrando riproducibilità degli elettrodi, buona stabilità e densità di fotocorrenti di circa 37 mA, e saranno utilizzati nel dimostratore finale. Il Capitolo 5 fornisce una panoramica sul trasferimento simultaneo di elettroni e protoni (PCET), focalizzandosi su meccanismo e termodinamica delle reazioni. Il Capitolo 6 esplora la dinamica del trasferimento di elettroni di un catalizzatore molecolare per l’ossidazione dell'acqua, [Ru(tpy)(bpy’)(H2O)]2+, ancorato a un film sottile di ITO, tramite tecniche spettroscopiche ed elettrochimiche, mostrando come la presenza di tamponi migliori le reazioni PCET, riducendo il sovrapotenziale per la generazione di RuIV=O e migliorandone la cinetica.
Photo-responsive semiconductor materials and hybrid photo-electrochemical interfaces for solar fuels production, environmental remediation and organic photo-electrosynthesis
GRANDI, SILVIA
2025
Abstract
Meeting global energy requirement sustainably is a major challenge today due to increasing demand, rising costs and environmental concerns. Currently, fossil fuels like coal, oil, and natural gas are the primary energy sources, but contribute to pollution, climate change, and resource depletion, escalating costs and geopolitical tensions. Solar energy stands out as the most promising long-term alternative, providing an inexhaustible and widely distributed resource. This growing interest in solar energy includes technologies for converting sunlight into solar fuels (e.g., H2), for water or air decontamination and disinfection, and for environmentally friendly waste valorisation. Solar energy can be converted into electricity or fuels through semiconducting materials that absorb light and enable redox reactions in photoelectrochemical cells. The thesis is divided into two sections: the first (Chapters 1-4) focuses on the optimisation of an n-type semiconductor for redox processes, applied to waste biomass valorisation and water decontamination. The second (Chapters 5-6) explores proton-coupled electron transfer (PCET), a redox process involved in biological systems, to promote water oxidation. Chapter 1 provides an overview of semiconductors and photoelectrochemistry, focusing on photoelectrochemical water splitting, environmental remediation, and waste valorisation using n-type semiconductors. Chapter 2 outlines the aim of the first section, including the optimization of hematite-based photoanodes and their use in promoting redox processes. Chapter 3 discusses the optimization of hematite-based photoanodes' key features affecting photoelectrochemical performance, such as hydrothermal synthesis time, temperature, and pressure, and doping with Ti(IV)-based compounds like MXenes. The optimization led to the creation of standard hematite electrodes, whose properties were studied using SEM, EDS, XRD, and UV-VIS analyses, and their photoelectrochemical performance was assessed through J-V profiles and IPCE under simulated solar illumination. Chapter 4 discusses the applications of hematite-based photoanodes in redox processes. In paragraph 4.1, these electrodes were used in a photoelectrochemical cell to oxidize Sodium Dodecyl Sulphate (SDS) while storing solar energy as hydrogen. Photoluminescence radical detection revealed that SDS degradation occurred via OH• radicals. EIS showed selectivity for SDS degradation, likely due to adsorption on the electrode surface. GC analysis confirmed the production of both H2 and CO2, demonstrating successful SDS mineralization and solar fuel generation. In paragraph 4.2, hematite photoanodes were used to photo-oxidize 5-hydroxymethylfurfural into furan dicarboxylic acid (FDCA) in aqueous environment. Performance was improved by coating the electrodes with Co-based catalysts, such as cobalt iron oxide (CoFeOx) and cobalt phosphate (CoPi). The CoPi-modified electrode achieved 86% FDCA yield, compared to 54% of bare hematite. This improvement was due to the catalyst effect on charge carrier dynamics, analysed by EIS and IMPS. Paragraph 4.3 outlines the scaling-up of hematite photoanodes for a lab-scale PEC cell for CO2 reduction and biomass valorisation. The photoanodes were scaled from 1 cm2 to 25 cm², showing reproducible electrode responses, good stability, and photocurrent densities of ca. 37 mA, that will be used in the final demonstrator. Chapter 5 overviews proton-coupled electron transfer (PCET), focusing on the mechanism and thermodynamics of these reactions. Chapter 6 explores the electron transfer dynamics of a molecular water oxidation catalyst, [Ru(tpy)(bpy’)(H2O)]2+, anchored to an ITO thin film, and characterizes its PCET process spectroscopically and electrochemically. The results showed that PCET reactions were enhanced by buffers, lowering the overpotential for RuIV=O generation and improving kinetics.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD Thesis Silvia Grandi.pdf
embargo fino al 01/04/2026
Descrizione: PhD Thesis Silvia Grandi
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
16.31 MB
Formato
Adobe PDF
|
16.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


