n this work we presented how the use of suitable electroanalytical, thermodynamic and spectroscopic methods combined with proper experimental conditions can provide comprehensive information on the interaction between metal ions and peptides in solution, as a successful strategy for studying biological systems. Our candidate peptide is calcitermin, an effective metal chelator with significant anti-Candida and antibacterial activity in the presence of divalent metals. While the bioinorganic chemistry of calcitermin with zinc and copper is quite well described in the literature, no data about nickel complexes are available; we therefore deepened calcitermin ability to form nickel complexes by different analytical techniques, including potentiometry, ultraviolet–visible absorption spectrophotometry, circular dichroism and high-resolution mass spectrometry. Moreover, for the first time we have investigated the antiviral activity of calcitermin and its metal complexes towards Herpes simplex type 1. Despite the nickel-associated slow kinetics, which requires specific experimental precautions, calcitermin forms stable complexes with this cation at different pH conditions. Both the apopeptide and its metal complexes show a random coil secondary structure, which is often characteristic of viral cellular adhesion inhibition. This research highlights that calcitermin and its metal complexes can interfere with viral infections, particularly HSV-1, most likely by altering cell membrane permeability.

In this work we presented how the use of suitable electroanalytical, thermodynamic and spectroscopic methods combined with proper experimental conditions can provide comprehensive information on the interaction between metal ions and peptides in solution, as a successful strategy for studying biological systems. Our candidate peptide is calcitermin, an effective metal chelator with significant anti-Candida and antibacterial activity in the presence of divalent metals. While the bioinorganic chemistry of calcitermin with zinc and copper is quite well described in the literature, no data about nickel complexes are available; we therefore deepened calcitermin ability to form nickel complexes by different analytical techniques, including potentiometry, ultraviolet–visible absorption spectrophotometry, circular dichroism and high-resolution mass spectrometry. Moreover, for the first time we have investigated the antiviral activity of calcitermin and its metal complexes towards Herpes simple...

A multi-technique approach to enlighten the role of metal coordination in calcitermin antiviral properties

Anna Caproni;Mattia Buratto;Silvia Leveraro;Peggy Marconi;Klaudia Szarszon;Maurizio Remelli;Chiara Nordi;Riccardo Fontana;Mariaconcetta Sicurella
;
Denise Bellotti
2025

Abstract

In this work we presented how the use of suitable electroanalytical, thermodynamic and spectroscopic methods combined with proper experimental conditions can provide comprehensive information on the interaction between metal ions and peptides in solution, as a successful strategy for studying biological systems. Our candidate peptide is calcitermin, an effective metal chelator with significant anti-Candida and antibacterial activity in the presence of divalent metals. While the bioinorganic chemistry of calcitermin with zinc and copper is quite well described in the literature, no data about nickel complexes are available; we therefore deepened calcitermin ability to form nickel complexes by different analytical techniques, including potentiometry, ultraviolet–visible absorption spectrophotometry, circular dichroism and high-resolution mass spectrometry. Moreover, for the first time we have investigated the antiviral activity of calcitermin and its metal complexes towards Herpes simple...
2025
Caproni, Anna; Buratto, Mattia; Leveraro, Silvia; Marconi, Peggy; Szarszon, Klaudia; Remelli, Maurizio; Nordi, Chiara; Fontana, Riccardo; Sicurella, M...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2584110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact