Background: Macrophages are major effectors in regulating immune response and inflammation. The pro-inflammatory phenotype (M1) is induced by the activation of the Toll-like receptor 4 (TLR4) on the macrophage surface, which recognizes lipopolysaccharide (LPS), a component of Gram-negative bacterial wall, and by the binding of interferon-gamma (IFNγ), a cytokine released by activated T lymphocytes, to its receptor (IFNGR). Among the pathways activated by LPS/IFNγ is the Notch pathway, which promotes the M1 phenotype. Conversely, 17β-estradiol (E2) has been shown to blunt LPS-mediated inflammatory response. While it has been shown that E2 regulates the activity of the Notch1 receptor in human endothelial cells, there is no evidence of estrogen-mediated regulation of Notch1 in macrophages. Methods and results: In this study, RAW 264.7 cells were stimulated with LPS/IFNγ in the presence or absence of E2 and/or N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor of γ-secretase, the enzyme involved in Notch activation. The effects of treatment on inducible nitric oxide synthase (iNOS), on components of the Notch pathway, and MAPK (mitogen-activated protein kinase) were assessed by quantitative PCR and Western blotting. We found that E2, through a mechanism involving the inhibition of p38 phosphorylation, reduces the activation of Notch1 induced by LPS/IFNγ. On the contrary, Notch1 exerts a negative control on the estrogen receptor α (ERα) since Notch1 inhibition increases the protein levels of this receptor. Conclusion: In conclusion, we report for the first time a Notch-ERα interaction in macrophages. Our data suggest that E2 may reduce LPS/IFNγ-mediated M1 pro-inflammatory phenotype in macrophages by inhibiting Notch1. This finding encourages further studies on Notch1 inhibitors as novel treatments for inflammation-related diseases.

17β-estradiol inhibits Notch1 activation in murine macrophage cell line RAW 264.7

Severi, Paolo
Methodology
;
Ascierto, Alessia
Methodology
;
Marracino, Luisa
Methodology
;
Ouambo Talla, Achille Wilfred
Methodology
;
Aquila, Giorgio
Methodology
;
Martino, Valeria
Methodology
;
Dalessandro, Francesca;Minghini, Giada
Methodology
;
Vieceli Dalla Sega, Francesco
Conceptualization
;
Fortini, Francesca
Conceptualization
;
Rizzo, Paola
Supervision
2024

Abstract

Background: Macrophages are major effectors in regulating immune response and inflammation. The pro-inflammatory phenotype (M1) is induced by the activation of the Toll-like receptor 4 (TLR4) on the macrophage surface, which recognizes lipopolysaccharide (LPS), a component of Gram-negative bacterial wall, and by the binding of interferon-gamma (IFNγ), a cytokine released by activated T lymphocytes, to its receptor (IFNGR). Among the pathways activated by LPS/IFNγ is the Notch pathway, which promotes the M1 phenotype. Conversely, 17β-estradiol (E2) has been shown to blunt LPS-mediated inflammatory response. While it has been shown that E2 regulates the activity of the Notch1 receptor in human endothelial cells, there is no evidence of estrogen-mediated regulation of Notch1 in macrophages. Methods and results: In this study, RAW 264.7 cells were stimulated with LPS/IFNγ in the presence or absence of E2 and/or N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor of γ-secretase, the enzyme involved in Notch activation. The effects of treatment on inducible nitric oxide synthase (iNOS), on components of the Notch pathway, and MAPK (mitogen-activated protein kinase) were assessed by quantitative PCR and Western blotting. We found that E2, through a mechanism involving the inhibition of p38 phosphorylation, reduces the activation of Notch1 induced by LPS/IFNγ. On the contrary, Notch1 exerts a negative control on the estrogen receptor α (ERα) since Notch1 inhibition increases the protein levels of this receptor. Conclusion: In conclusion, we report for the first time a Notch-ERα interaction in macrophages. Our data suggest that E2 may reduce LPS/IFNγ-mediated M1 pro-inflammatory phenotype in macrophages by inhibiting Notch1. This finding encourages further studies on Notch1 inhibitors as novel treatments for inflammation-related diseases.
2024
Severi, Paolo; Ascierto, Alessia; Marracino, Luisa; Ouambo Talla, Achille Wilfred; Aquila, Giorgio; Martino, Valeria; Dalessandro, Francesca; Scarpant...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2572933
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact