In an Oberbeck–Boussinesq model, rigorously derived, which includes compressibility, one could expect that the onset of convection for Bénard’s problem occurs at a higher critical Rayleigh number with respect to the classic O–B solutions. The new partial differential equations exhibit non constant coefficients and the unknown velocity field is not divergence-free. By considering these equations, the critical Rayleigh number for the instability of the rest state in Lorenz approximation system is shown to be higher than the classical value, so proving increased stability of the rest state as expected.

A Lorenz model for an anelastic Oberbeck-Boussinesq system

Diego Grandi;Arianna Passerini
;
Manuela Trullo
In corso di stampa

Abstract

In an Oberbeck–Boussinesq model, rigorously derived, which includes compressibility, one could expect that the onset of convection for Bénard’s problem occurs at a higher critical Rayleigh number with respect to the classic O–B solutions. The new partial differential equations exhibit non constant coefficients and the unknown velocity field is not divergence-free. By considering these equations, the critical Rayleigh number for the instability of the rest state in Lorenz approximation system is shown to be higher than the classical value, so proving increased stability of the rest state as expected.
In corso di stampa
Grandi, Diego; Passerini, Arianna; Trullo, Manuela
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2571490
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact