The paper deals with a test for the goodness-of-fit of a model for count data, in the framework of Generalized Linear Models. The motivating example concerns the study on the effectiveness of policy incentives for the adoption of 4.0 technologies by Small and Medium Enterprises. According to the literature, openness to Industry 4.0 should be measured in terms of the number of 4.0 technologies adopted, represented by a count variable. To investigate the effectiveness of public policy interventions to encourage the adoption of 4.0 technologies, we propose the application of a model for count data with a permutation ANOVA to test the goodness-of-fit and for the model selection. When the distribution of the response is neither Poisson nor Negative Binomial, and in the quite common situation in which the response variance is much greater than the mean, the classic Poisson regression and Negative Binomial regression are not valid. The proposed testing method is based on the combination of permutation tests on the significance of the regression coefficient estimates. The power behaviour of the proposed semi-parametric solution is investigated through a comparative Monte Carlo simulation study. The performance of such a method is compared to those of the two main parametric competitors. The application of the permutation test to an interesting case study is presented. The dataset is original, and related to a sample survey carried out in Italy, about the adoption of Industry 4.0 technologies by Italian enterprises.

Semi-parametric approach for modelling overdispersed count data with application to Industry 4.0

Bonnini Stefano
Primo
;
Borghesi Michela
Secondo
;
2024

Abstract

The paper deals with a test for the goodness-of-fit of a model for count data, in the framework of Generalized Linear Models. The motivating example concerns the study on the effectiveness of policy incentives for the adoption of 4.0 technologies by Small and Medium Enterprises. According to the literature, openness to Industry 4.0 should be measured in terms of the number of 4.0 technologies adopted, represented by a count variable. To investigate the effectiveness of public policy interventions to encourage the adoption of 4.0 technologies, we propose the application of a model for count data with a permutation ANOVA to test the goodness-of-fit and for the model selection. When the distribution of the response is neither Poisson nor Negative Binomial, and in the quite common situation in which the response variance is much greater than the mean, the classic Poisson regression and Negative Binomial regression are not valid. The proposed testing method is based on the combination of permutation tests on the significance of the regression coefficient estimates. The power behaviour of the proposed semi-parametric solution is investigated through a comparative Monte Carlo simulation study. The performance of such a method is compared to those of the two main parametric competitors. The application of the permutation test to an interesting case study is presented. The dataset is original, and related to a sample survey carried out in Italy, about the adoption of Industry 4.0 technologies by Italian enterprises.
2024
Bonnini, Stefano; Borghesi, Michela; Giacalone, Massimiliano
File in questo prodotto:
File Dimensione Formato  
2024_BonBorGia_SEPS.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 992.93 kB
Formato Adobe PDF
992.93 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2570330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact