We consider a statistical inverse learning problem, where the task is to estimate a function f based on noisy point evaluations of Af, where A is a linear operator. The function Af is evaluated at i.i.d. random design points un, n = 1, …, N generated by an unknown general probability distribution. We consider Tikhonov regularization with general convex and p-homogeneous penalty functionals and derive concentration rates of the regularized solution to the ground truth measured in the symmetric Bregman distance induced by the penalty functional. We derive concrete rates for Besov norm penalties and numerically demonstrate the correspondence with the observed rates in the context of X-ray tomography.

Convex regularization in statistical inverse learning problems

Bubba T
Primo
;
2023

Abstract

We consider a statistical inverse learning problem, where the task is to estimate a function f based on noisy point evaluations of Af, where A is a linear operator. The function Af is evaluated at i.i.d. random design points un, n = 1, …, N generated by an unknown general probability distribution. We consider Tikhonov regularization with general convex and p-homogeneous penalty functionals and derive concentration rates of the regularized solution to the ground truth measured in the symmetric Bregman distance induced by the penalty functional. We derive concrete rates for Besov norm penalties and numerically demonstrate the correspondence with the observed rates in the context of X-ray tomography.
2023
Bubba, T; Burger, M; Helin, T; Ratti, L
File in questo prodotto:
File Dimensione Formato  
BubbaEtAl_IPI_2023_OnlineV.pdf

solo gestori archivio

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 941.98 kB
Formato Adobe PDF
941.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
10.3934_ipi.2023013.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 942.11 kB
Formato Adobe PDF
942.11 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2564851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact