We analyze the spectral properties of a particular class of unbounded open sets. These are made of a central bounded “core”, with finitely many unbounded tubes attached to it. We adopt an elementary and purely variational point of view, studying the compactness (or the defect of compactness) of level sets of the relevant constrained Dirichlet integral. As a byproduct of our argument, we also get exponential decay at infinity of variational eigenfunctions. Our analysis includes as a particular case a planar set (sometimes called “bookcover”), already encountered in the literature on curved quantum waveguides. J. Hersch suggested that this set could provide the sharp constant in the Makai-Hayman inequality for the bottom of the spectrum of the Dirichlet-Laplacian of planar simply connected sets. We disprove this fact, by means of a singular perturbation technique.

On the Spectrum of Sets Made of Cores and Tubes

Bianchi F.;Brasco L.
;
2024

Abstract

We analyze the spectral properties of a particular class of unbounded open sets. These are made of a central bounded “core”, with finitely many unbounded tubes attached to it. We adopt an elementary and purely variational point of view, studying the compactness (or the defect of compactness) of level sets of the relevant constrained Dirichlet integral. As a byproduct of our argument, we also get exponential decay at infinity of variational eigenfunctions. Our analysis includes as a particular case a planar set (sometimes called “bookcover”), already encountered in the literature on curved quantum waveguides. J. Hersch suggested that this set could provide the sharp constant in the Makai-Hayman inequality for the bottom of the spectrum of the Dirichlet-Laplacian of planar simply connected sets. We disprove this fact, by means of a singular perturbation technique.
2024
Bianchi, F.; Brasco, L.; Ognibene, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2562770
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact