Background: Microbial biofertilizers and algae-based biostimulants have been recognized for supporting sustainable agriculture. Field experiments were conducted in 2022 and 2023 growing seasons in an organic farm located in Ferrara (Italy) with the aim of evaluating plant growth-promoting microorganisms (PGPMs) and algae-based biostimulants (Biost) in tomato (Solanum lycopersicum L.). The experimental treatments were: (i) two microbial biofertilizers (PGPM_1, PGPM_2) and no inoculated plants (No_PGPM); and (ii) two algae-based biostimulant rates (0.5% (Biost_0.5%), 1.0% (Biost_1.0%)) and no application (No_Biost). PGPMs were applied at transplanting, while biostimulants at 15 and 30 days after transplanting. Treatments were replicated three times according to a split-plot experimental design. Plant characteristics were evaluated at 30 days after transplanting in No_Biost treatments. During tomato cultivation, soil plant analysis development (SPAD), nitrogen difference vegetation index (NDVI), leaf area index (LAI) and photosynthetic photon flux density (PPFD) were monitored. Tomato yield was determined. Results: PGPM_2 showed the highest shoot biomass (132.9 g plant-1), plant height (44.7 cm), leaf number (34.0 plant-1) and root biomass (9.22 g plant-1). Intermediate values were observed in PGPM_1, while all parameters were lower in No_PGPM. Both PGPMs achieved higher values of SPAD, NDVI, PPFD and LAI than No_PGPM. Biost_1.0% increased all measured growth parameters followed by Biost_0.5% and No_Biost, respectively. Tomato yield was the highest for PGPM_2-Biost_1.0% (67.2 t ha-1). PGPMs affected fruit size and sugar content, while biostimulants were associated with color and lycopene. Conclusion: The application of microbial biofertilizers and algae-based biostimulants could be part of environment-friendly practice in organic farming. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Microbial biofertilizers and algae‐based biostimulant affect fruit yield characteristics of organic processing tomato

Valentina, Quintarelli;Daniele, Borgatti;Silvia Rita, Stazi;Enrica, Allevato;Simonetta, Pancaldi;Costanza, Baldisserotto;Paola, Tedeschi;Emanuele, Radicetti
;
Mortadha, Ben Hassine
2024

Abstract

Background: Microbial biofertilizers and algae-based biostimulants have been recognized for supporting sustainable agriculture. Field experiments were conducted in 2022 and 2023 growing seasons in an organic farm located in Ferrara (Italy) with the aim of evaluating plant growth-promoting microorganisms (PGPMs) and algae-based biostimulants (Biost) in tomato (Solanum lycopersicum L.). The experimental treatments were: (i) two microbial biofertilizers (PGPM_1, PGPM_2) and no inoculated plants (No_PGPM); and (ii) two algae-based biostimulant rates (0.5% (Biost_0.5%), 1.0% (Biost_1.0%)) and no application (No_Biost). PGPMs were applied at transplanting, while biostimulants at 15 and 30 days after transplanting. Treatments were replicated three times according to a split-plot experimental design. Plant characteristics were evaluated at 30 days after transplanting in No_Biost treatments. During tomato cultivation, soil plant analysis development (SPAD), nitrogen difference vegetation index (NDVI), leaf area index (LAI) and photosynthetic photon flux density (PPFD) were monitored. Tomato yield was determined. Results: PGPM_2 showed the highest shoot biomass (132.9 g plant-1), plant height (44.7 cm), leaf number (34.0 plant-1) and root biomass (9.22 g plant-1). Intermediate values were observed in PGPM_1, while all parameters were lower in No_PGPM. Both PGPMs achieved higher values of SPAD, NDVI, PPFD and LAI than No_PGPM. Biost_1.0% increased all measured growth parameters followed by Biost_0.5% and No_Biost, respectively. Tomato yield was the highest for PGPM_2-Biost_1.0% (67.2 t ha-1). PGPMs affected fruit size and sugar content, while biostimulants were associated with color and lycopene. Conclusion: The application of microbial biofertilizers and algae-based biostimulants could be part of environment-friendly practice in organic farming. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
2024
Quintarelli, Valentina; Borgatti, Daniele; Baretta, Mattia; Stazi, Silvia Rita; Allevato, Enrica; Pancaldi, Simonetta; Baldisserotto, Costanza; Mancin...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2560350
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact