This cross-sectional study assesses the accuracy, sensitivity, and specificity of a large language model used to process unstructured, non-English emergency department (ED) data in medical records.

Use of a Large Language Model to Identify and Classify Injuries with Free-Text Emergency Department Data

Azzolina D.;Berchialla P.
Ultimo
2024

Abstract

This cross-sectional study assesses the accuracy, sensitivity, and specificity of a large language model used to process unstructured, non-English emergency department (ED) data in medical records.
2024
Lorenzoni, G.; Gregori, D.; Bressan, S.; Ocagli, H.; Azzolina, D.; Da Dalt, L.; Berchialla, P.
File in questo prodotto:
File Dimensione Formato  
lorenzoni_2024_ld_240070_1715796060.10868.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 372.22 kB
Formato Adobe PDF
372.22 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2557810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact