Machine Learning is a branch of Artificial Intelligence with the goal of learning patterns from data. These techniques fall into two big categories: supervised and unsupervised learning. The former classify data based on a given set of examples whose classification is known (hence the name supervised), while the latter try to group the data without knowing a priori the possible classes. Neural Networks and clustering algorithms are two of the most prominent examples of the two aforementioned categories. In this paper, we describe a machine learning pipeline to analyse multispectral and hyperspectral images. Our approach first adopts neural networks to identify relevant pixels and then applies a clustering algorithm to group the pixels according to two different criteria, namely intensity and variation of intensity.

A Machine Learning Pipeline to Analyse Multispectral and Hyperspectral Images

Azzolini D.
Primo
;
Bizzarri A.
Secondo
;
Fraccaroli M.;Lamma E.
Ultimo
2023

Abstract

Machine Learning is a branch of Artificial Intelligence with the goal of learning patterns from data. These techniques fall into two big categories: supervised and unsupervised learning. The former classify data based on a given set of examples whose classification is known (hence the name supervised), while the latter try to group the data without knowing a priori the possible classes. Neural Networks and clustering algorithms are two of the most prominent examples of the two aforementioned categories. In this paper, we describe a machine learning pipeline to analyse multispectral and hyperspectral images. Our approach first adopts neural networks to identify relevant pixels and then applies a clustering algorithm to group the pixels according to two different criteria, namely intensity and variation of intensity.
2023
9798350361513
Machine Learning, Multispectral Imaging, Image Analysis
File in questo prodotto:
File Dimensione Formato  
main.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
A_Machine_Learning_Pipeline_2023.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2557791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact