In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br– oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO’s intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO–PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.

Role of Intragap States in Sensitized Sb-Doped Tin Oxide Photoanodes for Solar Fuels Production

Serena Berardi
Primo
;
Edoardo Marchini;Vito Cristino;Rita Boaretto;Stefano Caramori
Ultimo
2024

Abstract

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br– oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO’s intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO–PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.
2024
Berardi, Serena; Benazzi, Elisabetta; Marchini, Edoardo; Cristino, Vito; Argazzi, Roberto; Boaretto, Rita; Gobbato, Thomas; Rigodanza, Francesco; Ceru...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2554110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact