In the analysis of the Griliches' knowledge capital production function, previous works pointed out the relevance of incorporating slope heterogeneity in the technological parameters, cross-sectional dependence arising simultaneously from common factors and spillovers, and possible nonlinear effects of relevant common observed variables. In order to solve the above problems, in this article we introduce a semi-parametric model in a partially linear form that copes simultaneously with all the previous specification issues. The asymptotic properties of the resulting estimators are obtained and the theoretical findings are further supported for small samples via several Monte Carlo experiments and an empirical application.

A Semi‐parametric Panel Data Model with Common Factors and Spatial Dependence

Soberon, Alexandra
Primo
;
Musolesi, Antonio
Penultimo
;
2024

Abstract

In the analysis of the Griliches' knowledge capital production function, previous works pointed out the relevance of incorporating slope heterogeneity in the technological parameters, cross-sectional dependence arising simultaneously from common factors and spillovers, and possible nonlinear effects of relevant common observed variables. In order to solve the above problems, in this article we introduce a semi-parametric model in a partially linear form that copes simultaneously with all the previous specification issues. The asymptotic properties of the resulting estimators are obtained and the theoretical findings are further supported for small samples via several Monte Carlo experiments and an empirical application.
2024
Soberon, Alexandra; Musolesi, Antonio; Rodriguez‐poo, Juan M.
File in questo prodotto:
File Dimensione Formato  
Oxf Bull Econ Stat - 2024 - Soberon - A Semi‐parametric Panel Data Model with Common Factors and Spatial Dependence.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 569.24 kB
Formato Adobe PDF
569.24 kB Adobe PDF Visualizza/Apri
Oxf Bull Econ Stat - 2024 - Soberon - A Semi‐parametric.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 569.33 kB
Formato Adobe PDF
569.33 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2545230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact