Probabilistic Answer Set Programming (PASP) is a powerful formalism that allows to model uncertain scenarios with answer set programs. One of the possible semantics for PASP is the credal semantics, where a query is associated with a probability interval rather than a sharp probability value. In this paper, we extend the learning from interpretations task, usually considered for Probabilistic Logic Programming, to PASP: the goal is, given a set of (partial) interpretations, to learn the parameters of a PASP program such that the product of the lower bounds of the probability intervals of the interpretations is maximized. Experimental results show that the execution time of the algorithm is heavily dependent on the number of parameters rather than on the number of interpretations.

Learning the Parameters of Probabilistic Answer Set Programs

Azzolini D.
Primo
;
Bellodi E.
Secondo
;
Riguzzi F.
Ultimo
2024

Abstract

Probabilistic Answer Set Programming (PASP) is a powerful formalism that allows to model uncertain scenarios with answer set programs. One of the possible semantics for PASP is the credal semantics, where a query is associated with a probability interval rather than a sharp probability value. In this paper, we extend the learning from interpretations task, usually considered for Probabilistic Logic Programming, to PASP: the goal is, given a set of (partial) interpretations, to learn the parameters of a PASP program such that the product of the lower bounds of the probability intervals of the interpretations is maximized. Experimental results show that the execution time of the algorithm is heavily dependent on the number of parameters rather than on the number of interpretations.
2024
9783031556296
9783031556302
Parameter Learning; Probabilistic Answer Set Programming; Statistical Relational Artificial Intelligence
File in questo prodotto:
File Dimensione Formato  
2022pasp_parameter_learning.pdf

solo gestori archivio

Descrizione: Post-print
Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 513.27 kB
Formato Adobe PDF
513.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
fulltext.pdf

solo gestori archivio

Descrizione: Capitolo
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 256.71 kB
Formato Adobe PDF
256.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Learning the Parameters of Probabilistic Answer Set Programs.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 455.81 kB
Formato Adobe PDF
455.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2545030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact