Probabilistic Answer Set Programming (PASP) is a powerful formalism that allows to model uncertain scenarios with answer set programs. One of the possible semantics for PASP is the credal semantics, where a query is associated with a probability interval rather than a sharp probability value. In this paper, we extend the learning from interpretations task, usually considered for Probabilistic Logic Programming, to PASP: the goal is, given a set of (partial) interpretations, to learn the parameters of a PASP program such that the product of the lower bounds of the probability intervals of the interpretations is maximized. Experimental results show that the execution time of the algorithm is heavily dependent on the number of parameters rather than on the number of interpretations.
Learning the Parameters of Probabilistic Answer Set Programs
Azzolini D.
Primo
;Bellodi E.Secondo
;Riguzzi F.Ultimo
2024
Abstract
Probabilistic Answer Set Programming (PASP) is a powerful formalism that allows to model uncertain scenarios with answer set programs. One of the possible semantics for PASP is the credal semantics, where a query is associated with a probability interval rather than a sharp probability value. In this paper, we extend the learning from interpretations task, usually considered for Probabilistic Logic Programming, to PASP: the goal is, given a set of (partial) interpretations, to learn the parameters of a PASP program such that the product of the lower bounds of the probability intervals of the interpretations is maximized. Experimental results show that the execution time of the algorithm is heavily dependent on the number of parameters rather than on the number of interpretations.File | Dimensione | Formato | |
---|---|---|---|
2022pasp_parameter_learning.pdf
solo gestori archivio
Descrizione: Post-print
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
513.27 kB
Formato
Adobe PDF
|
513.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
fulltext.pdf
solo gestori archivio
Descrizione: Capitolo
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
256.71 kB
Formato
Adobe PDF
|
256.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Learning the Parameters of Probabilistic Answer Set Programs.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
455.81 kB
Formato
Adobe PDF
|
455.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.