Over the past decades, there has been a remarkable surge in the release of carbon dioxide into the atmosphere, leading to global warming and subsequent environmental damage. Consequently, there is a concerted effort today to achieve carbon neutrality by striking a balance between human-generated emissions and their removal from the atmosphere. As a result, extensive research is underway to develop efficient strategies both for carbon capture and storage (CCS), exploring various liquid and solid sorbents, and for carbon capture and utilization (CCU). In this context, there is an urgent need to repurpose CO2 as a renewable feedstock for producing high-value chemicals and fuels. Nonetheless, despite the significant interest from both academia and industry on these methodologies, numerous challenges remain unaddressed, including the need to attain process efficiency levels comparable to those in the petrochemical sector. The primary challenge in using carbon dioxide as a chemical feedstock is an intrinsic factor deriving from efficiency problems related to mass-transfer limitations in biphasic gas-liquid transformations. In this thesis work a carbon dioxide model reaction, i.e. the styrene carbonate synthesis from its corresponding epoxide, has been used to study new methodologies, ranging from batch aerosol through plug flow reaction to continuous flow microdroplets conditions, to overcome the mass-transfer limitations in these kind of reactions through process intensification. Furthermore, new catalysts have been prepared and used to build implemented methodologies as green as possible, avoiding wastes and exploiting the cooperation of different technologies to replace the use of extreme reaction conditions (high temperatures and pressures). A discrete amount of new ionic liquids, used as catalysts for the production in mild conditions of cyclic carbonates, have been obtained. More of them can be designed and prepared, inspired by the ones that have been synthesized in this thesis work. In fact, keeping in mind the features that can confer to a ionic liquid suitable properties to be exploited as organocatalyst in reaction with CO2, the range of new compounds that can be synthesized is very wide. Also, magnetic nanoparticles have been exploited in nanocatalysis, considering them a very promising technology to recycle and reduce wastes as much as possible. In fact, despite their synthesis requires a moderate effort, once they have been prepared, they are very stable and they can be used in semi-heterogeneous catalysis and easily recycled through a static magnetic field. Traditional flow chemistry was a very useful tool for the process intensification of biphasic gas-liquid transformations, while aerosol brought to even more improved results. Microdroplets conditions can be applied to a wide range of reactions, using batch or continuous flow processes, depending on the circumstances. Continuous flow aerosol can give very fast reactions, but it requires a lot of reactive mixture which can be easy to be prepared and cheap. On the contrary, batch aerosol is more suitable for reactions that require a longer contact time between the two phases or when the catalyst used is precious, i.e. expensive or difficult to obtain. Anyway, all the experiments performed in aerosol resulted in enhanced styrene carbonate formation from its corresponding epoxide and CO2. In this scenario, considering the advantages of using new reactors like continuous flow and/or aerosol reactors, semi-heterogeneous magnetic catalysts and the related literature, it appears to be very promising to exploit the integration of all these different innovative methodologies, which can synergistically cooperate to improve the speed, selectivity and productivity in cyclic carbonates production, and furthermore in the entire realm of gasliquid transformations.

Negli ultimi decenni si è verificato un notevole aumento del rilascio di CO2 nell’atmosfera, che ha portato al riscaldamento globale e ai conseguenti danni ambientali. Oggi c’è uno sforzo concertato per raggiungere la Carbon neutrality, cercando un equilibrio tra le emissioni generate dall’uomo e la rimozione della CO2 dall’atmosfera. E' in corso una ricerca approfondita per sviluppare strategie efficienti sia per la cattura e lo stoccaggio del carbonio (CCS), esplorando vari assorbenti liquidi e solidi, sia per la cattura e l’utilizzo del carbonio (CCU). E' diventato sempre più importante riutilizzare la CO2 come materia prima rinnovabile per la produzione di sostanze chimiche ad alto valore aggiunto e combustibili. La difficoltà principale nell’utilizzo dell’anidride carbonica come materia prima chimica deriva da un fattore intrinseco dovuto a problemi di efficienza legati alle limitazioni nel trasferimento di massa nelle trasformazioni bifasiche gas-liquido. In questo lavoro di tesi è stata utilizzata una reazione modello della CO2, ovvero la sintesi dello stirene carbonato a partire dal suo corrispondente epossido, per studiare nuove metodologie, che vanno dall'aerosol in batch, passando attraverso reazioni in plug flow, alle condizioni aerosol in flusso continuo, al fine di superare le limitazioni di trasferimento di massa. Sono stati preparati nuovi catalizzatori e si sono utilizzati, in modo da dare vita a metodologie implementate, quanto più Green possibile, evitando sprechi e sfruttando la cooperazione di diverse tecnologie per sostituire l'uso di condizioni di reazione estreme (alte temperature e pressioni). È stata ottenuta una discreta quantità di nuovi liquidi ionici, utilizzati come catalizzatori per la produzione di carbonati ciclici in condizioni blande. Inoltre, sono state sfruttate come nanocatalizzatori delle nanoparticelle magnetiche preparate ad-hoc, in quanto rappresentano una tecnologia molto promettente per riciclare e ridurre il più possibile gli scarti. Infatti, nonostante la loro sintesi richieda uno sforzo moderato, una volta preparate sono molto stabili e possono essere utilizzate in catalisi semi-eterogenea e facilmente riciclate attraverso l’applicazione di un campo magnetico statico. La chimica in flusso tradizionale si è rivelata uno strumento molto utile per la process intensification di trasformazioni bifasiche gas-liquido, mentre l’aerosol ha portato a risultati ancora migliori. Infatti, quest’ultima metodologia garantisce l’applicabilità estesa ad un'ampia gamma di reazioni, utilizzando processi batch o in flusso continuo, a seconda delle circostanze. L'aerosol in flusso continuo può dare reazioni molto veloci, ma richiede molta miscela di reazione che quindi deve essere facile da preparare ed economica. Al contrario, l'aerosol in batch è più adatto per reazioni che richiedono un tempo di contatto più lungo tra le due fasi o quando il catalizzatore utilizzato è prezioso, cioè costoso o difficile da ottenere.Tutti gli esperimenti eseguiti in aerosol hanno portato ad una maggiore formazione di stirene carbonato dal corrispondente epossido e CO2. Considerando i vantaggi derivanti dall’utilizzo di nuovi reattori come reattori a flusso continuo e/o aerosol, catalizzatori magnetici semi-eterogenei e la letteratura correlata, sembra molto promettente andare a sfruttare l’integrazione di tutte queste diverse metodologie che possono sinergicamente cooperare, per migliorare la velocità, la selettività e l'efficienza nella produzione di carbonati e in tutte le reazioni gas-liquido.

New approaches on CO2 reutilization for cyclic carbonates synthesis: catalysis and process intensification

ROVEGNO, CATERINA
2024

Abstract

Over the past decades, there has been a remarkable surge in the release of carbon dioxide into the atmosphere, leading to global warming and subsequent environmental damage. Consequently, there is a concerted effort today to achieve carbon neutrality by striking a balance between human-generated emissions and their removal from the atmosphere. As a result, extensive research is underway to develop efficient strategies both for carbon capture and storage (CCS), exploring various liquid and solid sorbents, and for carbon capture and utilization (CCU). In this context, there is an urgent need to repurpose CO2 as a renewable feedstock for producing high-value chemicals and fuels. Nonetheless, despite the significant interest from both academia and industry on these methodologies, numerous challenges remain unaddressed, including the need to attain process efficiency levels comparable to those in the petrochemical sector. The primary challenge in using carbon dioxide as a chemical feedstock is an intrinsic factor deriving from efficiency problems related to mass-transfer limitations in biphasic gas-liquid transformations. In this thesis work a carbon dioxide model reaction, i.e. the styrene carbonate synthesis from its corresponding epoxide, has been used to study new methodologies, ranging from batch aerosol through plug flow reaction to continuous flow microdroplets conditions, to overcome the mass-transfer limitations in these kind of reactions through process intensification. Furthermore, new catalysts have been prepared and used to build implemented methodologies as green as possible, avoiding wastes and exploiting the cooperation of different technologies to replace the use of extreme reaction conditions (high temperatures and pressures). A discrete amount of new ionic liquids, used as catalysts for the production in mild conditions of cyclic carbonates, have been obtained. More of them can be designed and prepared, inspired by the ones that have been synthesized in this thesis work. In fact, keeping in mind the features that can confer to a ionic liquid suitable properties to be exploited as organocatalyst in reaction with CO2, the range of new compounds that can be synthesized is very wide. Also, magnetic nanoparticles have been exploited in nanocatalysis, considering them a very promising technology to recycle and reduce wastes as much as possible. In fact, despite their synthesis requires a moderate effort, once they have been prepared, they are very stable and they can be used in semi-heterogeneous catalysis and easily recycled through a static magnetic field. Traditional flow chemistry was a very useful tool for the process intensification of biphasic gas-liquid transformations, while aerosol brought to even more improved results. Microdroplets conditions can be applied to a wide range of reactions, using batch or continuous flow processes, depending on the circumstances. Continuous flow aerosol can give very fast reactions, but it requires a lot of reactive mixture which can be easy to be prepared and cheap. On the contrary, batch aerosol is more suitable for reactions that require a longer contact time between the two phases or when the catalyst used is precious, i.e. expensive or difficult to obtain. Anyway, all the experiments performed in aerosol resulted in enhanced styrene carbonate formation from its corresponding epoxide and CO2. In this scenario, considering the advantages of using new reactors like continuous flow and/or aerosol reactors, semi-heterogeneous magnetic catalysts and the related literature, it appears to be very promising to exploit the integration of all these different innovative methodologies, which can synergistically cooperate to improve the speed, selectivity and productivity in cyclic carbonates production, and furthermore in the entire realm of gasliquid transformations.
MASSI, Alessandro
POLO, Eleonora
CAVAZZINI, Alberto
File in questo prodotto:
File Dimensione Formato  
PhD thesis_CR.pdf

accesso aperto

Descrizione: Tesi Rovegno Caterina
Tipologia: Tesi di dottorato
Dimensione 6.74 MB
Formato Adobe PDF
6.74 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2542653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact