Objectives: The high incidence of prostate cancer causes prostatic samples to significantly affect pathology laboratories workflow and turnaround times (TATs). Whole-slide imaging (WSI) and artificial intelligence (AI) have both gained approval for primary diagnosis in prostate pathology, providing physicians with novel tools for their daily routine. Methods: A systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was carried out in electronic databases to gather the available evidence on the application of AI-based algorithms to prostate cancer. Results: Of 6290 articles, 80 were included, mostly (59%) dealing with biopsy specimens. Glass slides were digitized to WSI in most studies (89%), roughly two-thirds of which (66%) exploited convolutional neural networks for computational analysis. The algorithms achieved good to excellent results about cancer detection and grading, along with significantly reduced TATs. Furthermore, several studies showed a relevant correlation between AI-identified histologic features and prognostic predictive variables such as biochemical recurrence, extraprostatic extension, perineural invasion, and disease-free survival. Conclusions: The published evidence suggests that AI can be reliably used for prostate cancer detection and grading, assisting pathologists in the time-consuming screening of slides. Further technologic improvement would help widening AI's adoption in prostate pathology, as well as expanding its prognostic predictive potential.

Artificial intelligence–based algorithms for the diagnosis of prostate cancer: A systematic review

Gobbo, Stefano;
2024

Abstract

Objectives: The high incidence of prostate cancer causes prostatic samples to significantly affect pathology laboratories workflow and turnaround times (TATs). Whole-slide imaging (WSI) and artificial intelligence (AI) have both gained approval for primary diagnosis in prostate pathology, providing physicians with novel tools for their daily routine. Methods: A systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was carried out in electronic databases to gather the available evidence on the application of AI-based algorithms to prostate cancer. Results: Of 6290 articles, 80 were included, mostly (59%) dealing with biopsy specimens. Glass slides were digitized to WSI in most studies (89%), roughly two-thirds of which (66%) exploited convolutional neural networks for computational analysis. The algorithms achieved good to excellent results about cancer detection and grading, along with significantly reduced TATs. Furthermore, several studies showed a relevant correlation between AI-identified histologic features and prognostic predictive variables such as biochemical recurrence, extraprostatic extension, perineural invasion, and disease-free survival. Conclusions: The published evidence suggests that AI can be reliably used for prostate cancer detection and grading, assisting pathologists in the time-consuming screening of slides. Further technologic improvement would help widening AI's adoption in prostate pathology, as well as expanding its prognostic predictive potential.
2024
Marletta, Stefano; Eccher, Albino; Martelli, Filippo Maria; Santonicco, Nicola; Girolami, Ilaria; Scarpa, Aldo; Pagni, Fabio; L’Imperio, Vincenzo; Pan...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2538792
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact