The Internet of Production (IoP) promises to be the answer to major challenges facing the Industrial Internet of Things (IIoT) and Industry 4.0. The lack of inter-company communication channels and standards, the need for heightened safety in Human Robot Collaboration (HRC) scenarios, and the opacity of data-driven decision support systems are only a few of the challenges we tackle in this chapter. We outline the communication and data exchange within the World Wide Lab (WWL) and autonomous agents that query the WWL which is built on the Digital Shadows (DS). We categorize our approaches into machine level, process level, and overarching principles. This chapter surveys the interdisciplinary work done in each category, presents different applications of the different approaches, and offers actionable items and guidelines for future work.The machine level handles the robots and machines used for production and their interactions with the human workers. It covers low-level robot control and optimization through gray-box models, task-specific motion planning, and opti- mization through reinforcement learning. In this level, we also examine quality assurance through nonintrusive real-time quality monitoring, defect recognition, and quality prediction. Work on this level also handles confidence, verification, and validation of re-configurable processes and reactive, modular, transparent process models. The process level handles the product life cycle, interoperability and analysis and optimization of production processes, which is overall attained by analyzing process data and event logs to detect and eliminate bottlenecks and learn new process models. Moreover, this level presents a communication channel between human workers and processes by extracting and formalizing human knowledge into ontology and providing a decision support by reasoning over this information. Overarching principles present a toolbox of omnipresent approaches for data collection, analysis, augmentation, and management, as well as the visualization and explanation of black-box models.

Actionable Artificial Intelligence for the Future of Production

Elisa Iacomini;Michael Herty;
2023

Abstract

The Internet of Production (IoP) promises to be the answer to major challenges facing the Industrial Internet of Things (IIoT) and Industry 4.0. The lack of inter-company communication channels and standards, the need for heightened safety in Human Robot Collaboration (HRC) scenarios, and the opacity of data-driven decision support systems are only a few of the challenges we tackle in this chapter. We outline the communication and data exchange within the World Wide Lab (WWL) and autonomous agents that query the WWL which is built on the Digital Shadows (DS). We categorize our approaches into machine level, process level, and overarching principles. This chapter surveys the interdisciplinary work done in each category, presents different applications of the different approaches, and offers actionable items and guidelines for future work.The machine level handles the robots and machines used for production and their interactions with the human workers. It covers low-level robot control and optimization through gray-box models, task-specific motion planning, and opti- mization through reinforcement learning. In this level, we also examine quality assurance through nonintrusive real-time quality monitoring, defect recognition, and quality prediction. Work on this level also handles confidence, verification, and validation of re-configurable processes and reactive, modular, transparent process models. The process level handles the product life cycle, interoperability and analysis and optimization of production processes, which is overall attained by analyzing process data and event logs to detect and eliminate bottlenecks and learn new process models. Moreover, this level presents a communication channel between human workers and processes by extracting and formalizing human knowledge into ontology and providing a decision support by reasoning over this information. Overarching principles present a toolbox of omnipresent approaches for data collection, analysis, augmentation, and management, as well as the visualization and explanation of black-box models.
2023
neural network, inverse problems, data-driven methods, robot control, iop
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2537113
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact