We study the Cauchy problem for Schrödinger type stochastic semilinear partial differential equations with uniformly bounded variable coefficients, depending on the space variables. We give conditions on the coefficients, on the drift and diffusion terms, on the Cauchy data, and on the spectral measure associated with the noise, such that the Cauchy problem admits a unique function-valued mild solution in the sense of Da Prato and Zabczyc.

Solution theory to semilinear stochastic equations of Schrödinger type on curved spaces I: operators with uniformly bounded coefficients

Alessia Ascanelli
Primo
;
2024

Abstract

We study the Cauchy problem for Schrödinger type stochastic semilinear partial differential equations with uniformly bounded variable coefficients, depending on the space variables. We give conditions on the coefficients, on the drift and diffusion terms, on the Cauchy data, and on the spectral measure associated with the noise, such that the Cauchy problem admits a unique function-valued mild solution in the sense of Da Prato and Zabczyc.
2024
Ascanelli, Alessia; Coriasco, Sandro; Süss, André
File in questo prodotto:
File Dimensione Formato  
StochSemiLinSchrCrvSps230806.pdf

solo gestori archivio

Descrizione: file così come accettato
Tipologia: Pre-print
Licenza: Non specificato
Dimensione 215.16 kB
Formato Adobe PDF
215.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
REPRINTSs13398-024-01554-7.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 367.13 kB
Formato Adobe PDF
367.13 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2536530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact