The Computational Storage paradigm is attracting increasing interest in many applications because of the performance and the energy-efficiency improvement, given by the tight coupling of processing elements with Solid State Drives through proper interconnection fabrics. In this work, we study a computational storage architecture aimed to boost the inference step of an Artificial Neural Network designed to predict the Error Recovery Flow outcome from the 3D NAND Flash memories characterization data. The application has been implemented on the Xilinx Alveo U250 Data center accelerator using a 15 bits fixed point precision, proving a 98.6% prediction accuracy, a performance boost up to 53.5 ×, and two orders of magnitude energy consumption reduction with respect to a CPU-only implementation.

Computational Storage for 3D NAND Flash Error Recovery Flow Prediction

Zambelli C.
Primo
;
Miola A.
Secondo
;
Calore E.;Micheloni R.
Penultimo
;
Schifano S. F.
Ultimo
2024

Abstract

The Computational Storage paradigm is attracting increasing interest in many applications because of the performance and the energy-efficiency improvement, given by the tight coupling of processing elements with Solid State Drives through proper interconnection fabrics. In this work, we study a computational storage architecture aimed to boost the inference step of an Artificial Neural Network designed to predict the Error Recovery Flow outcome from the 3D NAND Flash memories characterization data. The application has been implemented on the Xilinx Alveo U250 Data center accelerator using a 15 bits fixed point precision, proving a 98.6% prediction accuracy, a performance boost up to 53.5 ×, and two orders of magnitude energy consumption reduction with respect to a CPU-only implementation.
2024
978-3-031-48710-1
978-3-031-48711-8
3D NAND Flash; Computational Storage; FPGA; Inference; SSD
File in questo prodotto:
File Dimensione Formato  
SIE2023_proc_PP028_IRIS.pdf

solo gestori archivio

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Computational Storage for 3D NAND Flash Error Recovery Flow Prediction.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2532257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact