This study investigates the prescribed-time leader-follower formation strategy for heterogeneous multiagent sys-tems including unmanned aerial vehicles and unmanned ground vehicles under time-varying actuator faults and unknown dis-turbances based on adaptive neural network observers and backstepping method. Compared with the relevant works, the matching and mismatched disturbances of the leader agent are further taken into account in this study. A distributed fixed-time observer is developed for follower agents in order to timely obtain the position and velocity states of the leader, in which neural networks are employed to approximate the unknown disturbances. Furthermore, the actual sensor limitations make each follower only affected by local information and measurable local states. As a result, another fixed-time neural network observer is proposed to obtain the unknown states and the complex uncertainties. Then, a backstepping prescribed-time fault-tolerant formation controller is constructed by utilizing the estimations, which not only guarantees that the multiagent systems realize the desired formation configuration in a user-assignable finite time, but also ensures that the control action can be smooth everywhere. Finally, simulation examples are designed to testify the validity of the developed theoretical method.
Neural Network Observer-Based Prescribed-Time Fault-Tolerant Tracking Control for Heterogeneous Multiagent Systems With a Leader of Unknown Disturbances
Simani S.Ultimo
Writing – Review & Editing
2023
Abstract
This study investigates the prescribed-time leader-follower formation strategy for heterogeneous multiagent sys-tems including unmanned aerial vehicles and unmanned ground vehicles under time-varying actuator faults and unknown dis-turbances based on adaptive neural network observers and backstepping method. Compared with the relevant works, the matching and mismatched disturbances of the leader agent are further taken into account in this study. A distributed fixed-time observer is developed for follower agents in order to timely obtain the position and velocity states of the leader, in which neural networks are employed to approximate the unknown disturbances. Furthermore, the actual sensor limitations make each follower only affected by local information and measurable local states. As a result, another fixed-time neural network observer is proposed to obtain the unknown states and the complex uncertainties. Then, a backstepping prescribed-time fault-tolerant formation controller is constructed by utilizing the estimations, which not only guarantees that the multiagent systems realize the desired formation configuration in a user-assignable finite time, but also ensures that the control action can be smooth everywhere. Finally, simulation examples are designed to testify the validity of the developed theoretical method.File | Dimensione | Formato | |
---|---|---|---|
Neural_Network_Observer-Based_Prescribed-Time_2023.pdf
accesso aperto
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
Neural_Network_2023.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
893.64 kB
Formato
Adobe PDF
|
893.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.