Modern agricultural tractors are complex systems, in which multiple physical (and technological) domains interact to reach a wide set of competing goals, including work operational performance and energy efficiency. This complexity translates to the dynamic, multi-domain simulation models implemented to serve as digital twins, for rapid prototyping and effective pre-tuning, prior to bench and on-field testing. Consequently, a suitable simulation framework should have the capability to focus both on the vehicle as a whole and on individual subsystems. For each of the latter, multiple options should be available, with different levels of detail, to properly address the relevant phenomena, depending on the specific focus, for an optimal balance between accuracy and computation time. The methodology proposed here by the authors is based on the lumped parameter approach and integrates the models for the following subsystems in a modular context: internal combustion engine, hydromechanical transmission, vehicle body, and tyre–soil interaction. The model is completed by a load cycle module that generates stimulus time histories to reproduce the work load under real operating conditions. Traction capability is affected by vertical load on the wheels, which is even more relevant if the vehicle is travelling on an uncompacted soil and subject to a variable drawbar pull force as it is when ploughing. The vertical load is, in turn, heavily affected by vehicle dynamics, which can be accurately modelled via a full multibody implementation. The presented lumped parameter model is intended as a powerful simulation tool to evaluate tractor performance, both in terms of fuel consumption and traction dynamics, by considering the cascade phenomena from the wheel–ground interaction to the engine, passing through the dynamics of vehicle bodies and their mass transfer. Its capabilities and numerical results are presented for the simulation of a realistic ploughing operation.
Comprehensive lumped parameter and multibody approach for the dynamic simulation of agricultural tractors with tyre–soil interaction
Martelli M.
Primo
Methodology
;Chiarabelli D.Secondo
;Marani P.;Mucchi E.Penultimo
Supervision
;Polastri M.Ultimo
2023
Abstract
Modern agricultural tractors are complex systems, in which multiple physical (and technological) domains interact to reach a wide set of competing goals, including work operational performance and energy efficiency. This complexity translates to the dynamic, multi-domain simulation models implemented to serve as digital twins, for rapid prototyping and effective pre-tuning, prior to bench and on-field testing. Consequently, a suitable simulation framework should have the capability to focus both on the vehicle as a whole and on individual subsystems. For each of the latter, multiple options should be available, with different levels of detail, to properly address the relevant phenomena, depending on the specific focus, for an optimal balance between accuracy and computation time. The methodology proposed here by the authors is based on the lumped parameter approach and integrates the models for the following subsystems in a modular context: internal combustion engine, hydromechanical transmission, vehicle body, and tyre–soil interaction. The model is completed by a load cycle module that generates stimulus time histories to reproduce the work load under real operating conditions. Traction capability is affected by vertical load on the wheels, which is even more relevant if the vehicle is travelling on an uncompacted soil and subject to a variable drawbar pull force as it is when ploughing. The vertical load is, in turn, heavily affected by vehicle dynamics, which can be accurately modelled via a full multibody implementation. The presented lumped parameter model is intended as a powerful simulation tool to evaluate tractor performance, both in terms of fuel consumption and traction dynamics, by considering the cascade phenomena from the wheel–ground interaction to the engine, passing through the dynamics of vehicle bodies and their mass transfer. Its capabilities and numerical results are presented for the simulation of a realistic ploughing operation.File | Dimensione | Formato | |
---|---|---|---|
IET Cyber-Syst and Robotics - 2023 - Martelli - Comprehensive lumped parameter and multibody approach for the dynamic.pdf
accesso aperto
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
2.35 MB
Formato
Adobe PDF
|
2.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.