The first-row D-block metal ions are essential for the physiology of living organisms, functioning as cofactors in metalloproteins or structural components for enzymes: almost half of all proteins require metals to perform the biological function. Understanding metal–protein interactions is crucial to unravel the mysteries behind molecular biology, understanding the effects of metal imbalance and toxicity or the diseases due to disorders in metal homeostasis. Metal–protein interactions are dynamic: they are noncovalent and affected by the environment to which the system is exposed. To reach a complete comprehension of the system, different conditions must be considered for the experimental investigation, in order to get information on the species distribution, the ligand coordination modes, complex stoichiometry and geometry. Thinking about the whole environment where a protein acts, investigations are often challenging, and simplifications are required to study in detail the mechanisms of metal interaction. This chapter is intended to help researchers addressing the problem of the complexity of metal–protein interactions, with particular emphasis on the use of peptides as model systems for the metal coordination site. The thermodynamic and spectroscopic methods most widely employed to investigate the interaction between metal ions and peptides in solution are here covered. These include solid-phase peptide synthesis, potentiometric titrations, calorimetry, electrospray ionization mass spectrometry, UV–Vis spectrophotometry, circular dichroism (CD), nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Additional experimental methods, which can be employed to study metal complexes with peptides, are also briefly mentioned. A case-study is finally reported providing a practical example of the investigation of metal–protein interaction by means of thermodynamic and spectroscopic methods applied to peptide model systems.

Metal-protein solution interactions investigated using model systems: Thermodynamic and spectroscopic methods

Denise Bellotti
Primo
;
Silvia Leveraro
Secondo
;
Maurizio Remelli
Ultimo
2023

Abstract

The first-row D-block metal ions are essential for the physiology of living organisms, functioning as cofactors in metalloproteins or structural components for enzymes: almost half of all proteins require metals to perform the biological function. Understanding metal–protein interactions is crucial to unravel the mysteries behind molecular biology, understanding the effects of metal imbalance and toxicity or the diseases due to disorders in metal homeostasis. Metal–protein interactions are dynamic: they are noncovalent and affected by the environment to which the system is exposed. To reach a complete comprehension of the system, different conditions must be considered for the experimental investigation, in order to get information on the species distribution, the ligand coordination modes, complex stoichiometry and geometry. Thinking about the whole environment where a protein acts, investigations are often challenging, and simplifications are required to study in detail the mechanisms of metal interaction. This chapter is intended to help researchers addressing the problem of the complexity of metal–protein interactions, with particular emphasis on the use of peptides as model systems for the metal coordination site. The thermodynamic and spectroscopic methods most widely employed to investigate the interaction between metal ions and peptides in solution are here covered. These include solid-phase peptide synthesis, potentiometric titrations, calorimetry, electrospray ionization mass spectrometry, UV–Vis spectrophotometry, circular dichroism (CD), nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Additional experimental methods, which can be employed to study metal complexes with peptides, are also briefly mentioned. A case-study is finally reported providing a practical example of the investigation of metal–protein interaction by means of thermodynamic and spectroscopic methods applied to peptide model systems.
2023
9780323957762
Metal–protein interactions, Model peptides, Solution equilibria
File in questo prodotto:
File Dimensione Formato  
2023_Methods in Enzymology vol 687.pdf

solo gestori archivio

Descrizione: Volume completo
Tipologia: Full text (versione editoriale)
Licenza: Copyright dell'editore
Dimensione 38.33 MB
Formato Adobe PDF
38.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Metal–protein solution interactions investigated using model systems.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 10.29 MB
Formato Adobe PDF
10.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2526910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact