Chronic patients suffering from non-communicable diseases are often enrolled into a diagnostic and therapeutic care program featuring a personalized care plan. Healthcare is mostly provided at the patient's home, but those examinations and treatments that must be delivered at the hospital have to be explicitly booked. Booking is not trivial due to, on the one hand, the several time constraints that become particularly tight in the case of comorbidity, on the other hand, the limited availability of both staff and equipment at the hospital care units. This suggests that the scheduling of the clinical pathways for enrolled outpatients should be managed in a centralized manner, taking advantage of the fact that demand for services is known well in advance. The aim is to serve as many requests as possible (unattended requests are supplied by contracted private health facilities) in a timely manner, taking patients priority into account. Booking involves setting a date and a time for each selected health service, which is rather complex. In this work, we provide a declarative approach by encoding the problem in Answer Set Programming (ASP). In order to improve the scalability of the ASP approach, we present and compare two heuristic approaches, respectively based on service demand and time decomposition. All approaches are tested on instances of increasing size to assess scalability with respect to time horizon and number of requests.

Decomposition approaches for scheduling chronic outpatients' clinical pathways in Answer Set Programming

Gavanelli, M
;
Nonato, M;
2023

Abstract

Chronic patients suffering from non-communicable diseases are often enrolled into a diagnostic and therapeutic care program featuring a personalized care plan. Healthcare is mostly provided at the patient's home, but those examinations and treatments that must be delivered at the hospital have to be explicitly booked. Booking is not trivial due to, on the one hand, the several time constraints that become particularly tight in the case of comorbidity, on the other hand, the limited availability of both staff and equipment at the hospital care units. This suggests that the scheduling of the clinical pathways for enrolled outpatients should be managed in a centralized manner, taking advantage of the fact that demand for services is known well in advance. The aim is to serve as many requests as possible (unattended requests are supplied by contracted private health facilities) in a timely manner, taking patients priority into account. Booking involves setting a date and a time for each selected health service, which is rather complex. In this work, we provide a declarative approach by encoding the problem in Answer Set Programming (ASP). In order to improve the scalability of the ASP approach, we present and compare two heuristic approaches, respectively based on service demand and time decomposition. All approaches are tested on instances of increasing size to assess scalability with respect to time horizon and number of requests.
2023
Cappanera, P; Gavanelli, M; Nonato, M; Roma, M
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2526013
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact