In many applications it is required to determine a parameters set which is suitable for competing models. To this end, we are interested in ensemble methods to solve multiobjective optimization problems. Here, the ensemble Kalman Filter method is applied and adapted in order to solve coupled inverse nonlinear problems using a weighted function approach. An analysis of the mean field limit of the ensemble method yields an explicit update formula for the weights. Numerical examples show the improved performance of the proposed method.
Filtering Methods for Coupled Inverse Problems
Herty M.Primo
;Iacomini E.
Ultimo
2023
Abstract
In many applications it is required to determine a parameters set which is suitable for competing models. To this end, we are interested in ensemble methods to solve multiobjective optimization problems. Here, the ensemble Kalman Filter method is applied and adapted in order to solve coupled inverse nonlinear problems using a weighted function approach. An analysis of the mean field limit of the ensemble method yields an explicit update formula for the weights. Numerical examples show the improved performance of the proposed method.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Multiobjective.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2203.09841v1.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.