In many applications it is required to determine a parameters set which is suitable for competing models. To this end, we are interested in ensemble methods to solve multiobjective optimization problems. Here, the ensemble Kalman Filter method is applied and adapted in order to solve coupled inverse nonlinear problems using a weighted function approach. An analysis of the mean field limit of the ensemble method yields an explicit update formula for the weights. Numerical examples show the improved performance of the proposed method.

Filtering Methods for Coupled Inverse Problems

Herty M.
Primo
;
Iacomini E.
Ultimo
2023

Abstract

In many applications it is required to determine a parameters set which is suitable for competing models. To this end, we are interested in ensemble methods to solve multiobjective optimization problems. Here, the ensemble Kalman Filter method is applied and adapted in order to solve coupled inverse nonlinear problems using a weighted function approach. An analysis of the mean field limit of the ensemble method yields an explicit update formula for the weights. Numerical examples show the improved performance of the proposed method.
2023
Herty, M.; Iacomini, E.
File in questo prodotto:
File Dimensione Formato  
Multiobjective.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2203.09841v1.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2521650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact