Background: In earlier studies, it has been observed that 8-week treatment with a novel nutraceutical compound (NC) containing low monacolin K dose, polymethoxyflavones, phenolic acids, flavonoids, and hydroxytyrosol improves lipid profile and endothelial function and reduces the level of oxidized low-density lipoprotein (oxLDL). We hypothesize that this effect might be, at least in part, explained by positive modulation exerted by the NC on the atheroprotective function of high-density lipoprotein (HDL). Aim: This study aimed to evaluate whether the NC could influence determinants of HDL function. Methods: Forty-five subjects with low-moderate dyslipidaemia were enrolled and treated for 8 weeks with the NC, followed by 4 weeks of washout. Blood samples were collected at every time point to evaluate changes in lipid profile, endothelial function, oxLDL, and markers of HDL function, such as the anti-oxidant activities of paraoxonase-1, glutathione peroxidase-3 (Gpx3), lipoprotein-phospholipase A2 (Lp-PLA2), and pro-oxidant activity of myeloperoxidase (MPO). Results: Although the concentration of HDL-C did not change, the activity of Lp-PLA2 significantly decreased upon treatment (-11.6%, p<0.001) and returned to baseline level 4 weeks after the end of treatment. In contrast, Gpx3 increased after treatment (+5%, p<0.01) and remained unvaried after 4 weeks. Both MPO activity and concentration significantly decreased after the washout period (-33 and 32%, p<0.001). Conclusion: For the first time, it was found that the administration of an NC with beneficial effects on lipid homeostasis also positively impacts HDL function by improving the balance between protective and damaging determinants. Further investigation is required to corroborate our findings.
Background: In earlier studies, it has been observed that 8-week treatment with a novel nutraceutical compound (NC) containing low monacolin K dose, polymethoxyflavones, phenolic acids, flavonoids and hydroxytyrosol improves lipid profile and endothelial function and reduces the level of oxidized low-density lipoprotein (oxLDL). We hypothesize that this effect might be, at least in part, explained by positive modulation exerted by the NC on the atheroprotective function of high-density lipoprotein (HDL). Aim: This study aimed to evaluate whether the NC could influence determinants of HDL function. Methods: Forty-five subjects with low-moderate dyslipidaemia were enrolled and treated for 8 weeks with the NC, followed by 4 weeks of washout. Blood samples were collected at every time point to evaluate changes in lipid profile, endothelial function, oxLDL, and markers of HDL function, such as the anti-oxidant activities of paraoxonase-1, glutathione peroxidase-3 (Gpx3), lipoprotein-phospholipase A2 (Lp-PLA2), and pro-oxidant activity of myeloperoxidase (MPO). Results: Although the concentration of HDL-C did not change, the activity of Lp-PLA2 significantly decreased upon treatment (-11.6%, p<0.001) and returned to baseline level 4 weeks after the end of treatment. In contrast, Gpx3 increased after treatment (+5%, p<0.01) and remained unvaried after 4 weeks. Both MPO activity and concentration significantly decreased after the washout period (-33 and 32%, p<0.001). Conclusion: For the first time, it was found that the administration of an NC with beneficial effects on lipid homeostasis also positively impacts HDL function by improving the balance between protective and damaging determinants. Further investigation is required to corroborate our findings.
A Nutraceutical Compound Containing a Low Dose of Monacolin K, Polymethoxyflavones, Phenolic Acids, Flavonoids, and Hydroxytyrosol Improves HDL Functionality
Cervellati, CarloPrimo
;Trentini, AlessandroSecondo
;Rosta, Valentina;Zuliani, Giovanni;Vieceli Dalla Sega, Francesco
;Fortini, Francesca;Rizzo, Paola;Cimaglia, PaoloPenultimo
;Campo, GianlucaUltimo
2023
Abstract
Background: In earlier studies, it has been observed that 8-week treatment with a novel nutraceutical compound (NC) containing low monacolin K dose, polymethoxyflavones, phenolic acids, flavonoids and hydroxytyrosol improves lipid profile and endothelial function and reduces the level of oxidized low-density lipoprotein (oxLDL). We hypothesize that this effect might be, at least in part, explained by positive modulation exerted by the NC on the atheroprotective function of high-density lipoprotein (HDL). Aim: This study aimed to evaluate whether the NC could influence determinants of HDL function. Methods: Forty-five subjects with low-moderate dyslipidaemia were enrolled and treated for 8 weeks with the NC, followed by 4 weeks of washout. Blood samples were collected at every time point to evaluate changes in lipid profile, endothelial function, oxLDL, and markers of HDL function, such as the anti-oxidant activities of paraoxonase-1, glutathione peroxidase-3 (Gpx3), lipoprotein-phospholipase A2 (Lp-PLA2), and pro-oxidant activity of myeloperoxidase (MPO). Results: Although the concentration of HDL-C did not change, the activity of Lp-PLA2 significantly decreased upon treatment (-11.6%, p<0.001) and returned to baseline level 4 weeks after the end of treatment. In contrast, Gpx3 increased after treatment (+5%, p<0.01) and remained unvaried after 4 weeks. Both MPO activity and concentration significantly decreased after the washout period (-33 and 32%, p<0.001). Conclusion: For the first time, it was found that the administration of an NC with beneficial effects on lipid homeostasis also positively impacts HDL function by improving the balance between protective and damaging determinants. Further investigation is required to corroborate our findings.File | Dimensione | Formato | |
---|---|---|---|
11392-2520390.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
760.69 kB
Formato
Adobe PDF
|
760.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.