Background: Pulmonary arterial hypertension (PAH) encompasses a group of diseases characterized by raised pulmonary vascular resistance, resulting from vascular remodelling and inflammation. Bromodomain and extra-terminal (BET) proteins are required for the expression of a subset of NF-κB-induced inflammatory genes which can be inhibited by the BET mimic JQ1+. We hypothesised that JQ+ would supress TNFα-driven inflammatory responses in human pulmonary vascular cells from PAH patients. Methods: Immunohistochemical staining of human peripheral lung tissue (N = 14 PAH and N = 12 non-PAH) was performed for the BET proteins BRD2 and 4. Human pulmonary microvascular endothelial cells (HPMEC) and pulmonary artery smooth muscle cells (HPASMC) from PAH patients (N = 4) and non-PAH controls (N = 4) were stimulated with TNFα in presence or absence of JQ1+ or its inactive isomer JQ1-. IL-6 and -8 mRNA was measured by RT-qPCR and protein levels by ELISA. Chromatin immunoprecipitation analysis was performed using EZ-ChIP™ and NF-κB p65 activation determined using a TransAm kit. MTT assay was used to measure cell viability. Results: Nuclear staining of BRD2 and BRD4 was significantly (p < 0.0001) increased in the lung vascular endothelial and smooth muscle cells from PAH patients compared to controls with normal lung function. TNFα-driven IL-6 release from both HPMECs and HPASMCs was greater in PAH cells than control cells. Levels of CXCL8/IL-8 protein release was higher in PAH HPASMCs than in control cells with similar release observed in HPMECs. TNFα-induced recruitment of activated NF-κB p65 to the IL-6 and CXCL8/IL-8 promoters were similar in both cell types and between subject groups. JQ1+ suppressed TNFα-induced IL-6 and CXCL8/IL-8 release and mRNA expression to a comparable extent in control and PAH HPMECs and HPASMCs. JQ1 had a greater efficacy on IL-6 release in HPMEC and on CXCL8/IL-8 release in HPASMC. Conclusion: BET inhibition decreases TNFα driven inflammation in primary pulmonary vascular cells. The anti-inflammatory actions of JQ1 suggests distinct cell-specific regulatory control of these genes. BET proteins could be a target for future therapies for PAH.

Differential responses of pulmonary vascular cells from PAH patients and controls to TNFα and the effect of the BET inhibitor JQ1

Papi, Alberto;Casolari, Paolo;Caramori, Gaetano;
2023

Abstract

Background: Pulmonary arterial hypertension (PAH) encompasses a group of diseases characterized by raised pulmonary vascular resistance, resulting from vascular remodelling and inflammation. Bromodomain and extra-terminal (BET) proteins are required for the expression of a subset of NF-κB-induced inflammatory genes which can be inhibited by the BET mimic JQ1+. We hypothesised that JQ+ would supress TNFα-driven inflammatory responses in human pulmonary vascular cells from PAH patients. Methods: Immunohistochemical staining of human peripheral lung tissue (N = 14 PAH and N = 12 non-PAH) was performed for the BET proteins BRD2 and 4. Human pulmonary microvascular endothelial cells (HPMEC) and pulmonary artery smooth muscle cells (HPASMC) from PAH patients (N = 4) and non-PAH controls (N = 4) were stimulated with TNFα in presence or absence of JQ1+ or its inactive isomer JQ1-. IL-6 and -8 mRNA was measured by RT-qPCR and protein levels by ELISA. Chromatin immunoprecipitation analysis was performed using EZ-ChIP™ and NF-κB p65 activation determined using a TransAm kit. MTT assay was used to measure cell viability. Results: Nuclear staining of BRD2 and BRD4 was significantly (p < 0.0001) increased in the lung vascular endothelial and smooth muscle cells from PAH patients compared to controls with normal lung function. TNFα-driven IL-6 release from both HPMECs and HPASMCs was greater in PAH cells than control cells. Levels of CXCL8/IL-8 protein release was higher in PAH HPASMCs than in control cells with similar release observed in HPMECs. TNFα-induced recruitment of activated NF-κB p65 to the IL-6 and CXCL8/IL-8 promoters were similar in both cell types and between subject groups. JQ1+ suppressed TNFα-induced IL-6 and CXCL8/IL-8 release and mRNA expression to a comparable extent in control and PAH HPMECs and HPASMCs. JQ1 had a greater efficacy on IL-6 release in HPMEC and on CXCL8/IL-8 release in HPASMC. Conclusion: BET inhibition decreases TNFα driven inflammation in primary pulmonary vascular cells. The anti-inflammatory actions of JQ1 suggests distinct cell-specific regulatory control of these genes. BET proteins could be a target for future therapies for PAH.
2023
Mumby, Sharon; Perros, Frederic; Grynblat, Julien; Manaud, Gregoire; Papi, Alberto; Casolari, Paolo; Caramori, Gaetano; Humbert, Marc; John Wort, S; Adcock, Ian M
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2519730
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact