Olive trees are grown under high evaporative demand and less precipitations that are variable in time and space especially in semi-arid conditions. The objective of this work is to determine the most efficient water treatment applied in an olive field (Olea europaea L. cv Chemlali) from the 98th to the 294th Julian day, in Tunisian semi-arid conditions. The choice of this time frame was done to control the effect of irrigation on the trees behavior in the irrigation period of the year (from April to October) and determine the most sensitive phenological stages to irrigation. For this reasons, two water treatments were applied: T100% (irrigation at 100% of Available Water Content (AWC)) and T50% (irrigation at 50% AWC). The results show that, according to leaf water potential, carbon isotope discrimination, and olive production parameters, the T50% AWC water treatment is the most efficient. The leaf water potential of the two water treatments applied has not exceeded -2.5 MPa during the whole experiment which indicates that the trees of the two water treatments were not stressed. The T50% AWC shows a water use efficiency of 5.18 g/l compared to 2.93 g/l for T100% water treatment. This result demonstrate that Chemlali cultivar valorizes better low quantities of water rather than high quantities, so saving 50% of water resources applied will ensure the sustainability of water resources and stability of olive production.
Water use efficiency of olive tree under two water treatments in Tunisian semi-arid conditions
Ben Hassine, M
Primo
;
2017
Abstract
Olive trees are grown under high evaporative demand and less precipitations that are variable in time and space especially in semi-arid conditions. The objective of this work is to determine the most efficient water treatment applied in an olive field (Olea europaea L. cv Chemlali) from the 98th to the 294th Julian day, in Tunisian semi-arid conditions. The choice of this time frame was done to control the effect of irrigation on the trees behavior in the irrigation period of the year (from April to October) and determine the most sensitive phenological stages to irrigation. For this reasons, two water treatments were applied: T100% (irrigation at 100% of Available Water Content (AWC)) and T50% (irrigation at 50% AWC). The results show that, according to leaf water potential, carbon isotope discrimination, and olive production parameters, the T50% AWC water treatment is the most efficient. The leaf water potential of the two water treatments applied has not exceeded -2.5 MPa during the whole experiment which indicates that the trees of the two water treatments were not stressed. The T50% AWC shows a water use efficiency of 5.18 g/l compared to 2.93 g/l for T100% water treatment. This result demonstrate that Chemlali cultivar valorizes better low quantities of water rather than high quantities, so saving 50% of water resources applied will ensure the sustainability of water resources and stability of olive production.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.