Background Although young women ( aged ≤ 55 years) are at higher risk than similarly aged men for hospital readmission within 1 year after an acute myocardial infarction (AMI), no risk prediction models have been developed for them. The present study developed and internally validated a risk prediction model of 1-year post-AMI hospital readmission among young women that considered demographic, clinical, and gender-related variables. Methods We used data from the US Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients (VIRGO) study (n = 2007 women), a prospective observational study of young patients hospitalized with AMI. Bayesian model averaging was used for model selection and bootstrapping for internal validation. Model calibration and discrimination were respectively assessed with calibration plots and area under the curve. Results Within 1-year post-AMI, 684 women (34.1%) were readmitted to the hospital at least once. The final model predictors included: any in-hospital complication, baseline perceived physical health, obstructive coronary artery disease, diabetes, history of congestive heart failure, low income ( < $30,000 US), depressive symptoms, length of hospital stay, and race (White vs Black). Of the 9 retained predictors, 3 were gender-related. The model was well calibrated and exhibited modest discrimination (area under the curve = 0.66). Conclusions Our female-specific risk model was developed and internally validated in a cohort of young female patients hospitalized with AMI and can be used to predict risk of readmission. Whereas clinical factors were the strongest predictors, the model included several gender-related variables (ie, perceived physical health, depression, income level). However, discrimination was modest, indicating that other unmeasured factors contribute to variability in hospital readmission risk among younger women.
Young Women With Acute Myocardial Infarction: Risk Prediction Model for 1-Year Hospital Readmission
Raparelli V.;
2023
Abstract
Background Although young women ( aged ≤ 55 years) are at higher risk than similarly aged men for hospital readmission within 1 year after an acute myocardial infarction (AMI), no risk prediction models have been developed for them. The present study developed and internally validated a risk prediction model of 1-year post-AMI hospital readmission among young women that considered demographic, clinical, and gender-related variables. Methods We used data from the US Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients (VIRGO) study (n = 2007 women), a prospective observational study of young patients hospitalized with AMI. Bayesian model averaging was used for model selection and bootstrapping for internal validation. Model calibration and discrimination were respectively assessed with calibration plots and area under the curve. Results Within 1-year post-AMI, 684 women (34.1%) were readmitted to the hospital at least once. The final model predictors included: any in-hospital complication, baseline perceived physical health, obstructive coronary artery disease, diabetes, history of congestive heart failure, low income ( < $30,000 US), depressive symptoms, length of hospital stay, and race (White vs Black). Of the 9 retained predictors, 3 were gender-related. The model was well calibrated and exhibited modest discrimination (area under the curve = 0.66). Conclusions Our female-specific risk model was developed and internally validated in a cohort of young female patients hospitalized with AMI and can be used to predict risk of readmission. Whereas clinical factors were the strongest predictors, the model included several gender-related variables (ie, perceived physical health, depression, income level). However, discrimination was modest, indicating that other unmeasured factors contribute to variability in hospital readmission risk among younger women.File | Dimensione | Formato | |
---|---|---|---|
2023_CHJCOpenMay.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
613.91 kB
Formato
Adobe PDF
|
613.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.