Bent crystal are widely used as optics for X-rays, but via the phenomenon of planar channeling they may act as waveguide for relativistic charged particles beam as well, outperforming some of the traditional technologies currently employed. A physical description of the phenomenon and the resulting potential for applications in a particle accelerator is reported. The elastic properties of the anisotropic crystal lattice medium are discussed, introducing different types of curvature which can enable a wide array of bending schemes optimized for each different case features. The technological development of machining strategy and bending solutions useful for the fabrication of crystals suitable in high energy particle manipulations are described. As well as the high precision characterization processes developed in order to satisfy the strict requirements for installation in an accelerator. Finally, the characterization of channeling phenomenon in bent crystal is described, pointing out several experimental setups suitable to comply each specific case constrains.

Bent Crystal Design and Characterization for High-Energy Physics Experiments

Marco Romagnoni
Primo
;
Vincenzo Guidi
;
Laura Bandiera;Andrea Mazzolari;Mattia Soldani;Alexei Sytov;Melissa Tamisari
2022

Abstract

Bent crystal are widely used as optics for X-rays, but via the phenomenon of planar channeling they may act as waveguide for relativistic charged particles beam as well, outperforming some of the traditional technologies currently employed. A physical description of the phenomenon and the resulting potential for applications in a particle accelerator is reported. The elastic properties of the anisotropic crystal lattice medium are discussed, introducing different types of curvature which can enable a wide array of bending schemes optimized for each different case features. The technological development of machining strategy and bending solutions useful for the fabrication of crystals suitable in high energy particle manipulations are described. As well as the high precision characterization processes developed in order to satisfy the strict requirements for installation in an accelerator. Finally, the characterization of channeling phenomenon in bent crystal is described, pointing out several experimental setups suitable to comply each specific case constrains.
2022
Romagnoni, Marco; Guidi, Vincenzo; Bandiera, Laura; De Salvador, Davide; Mazzolari, Andrea; Sgarbossa, Francesco; Soldani, Mattia; Sytov, Alexei; Tamisari, Melissa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2510990
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact