The Pacific oyster Crassostrea gigas is one of the world’s most cultivated and prized molluscs. Alt-hough it is usually considered a luxury product, it meets all the requirements to be included in a sustainable diet, and its production and consumption have great potential for growth in the coming years. Oyster farming is a worldwide activity, with China and France as the main producers, but recently, the possibility of implementing the Italian production, mainly focused on clams and mussels, has been considered an interesting issue, especially due to the growing local and global demand. The present study has been carried out by collecting data from the Sacca di Goro, north-east Italy, the most important national mollusc farming area. Life cycle assessment (LCA) methodology was applied to two different farming scenarios in order to improve the overall sus-tainability of the process. Using OpenLCA™ software (GreenDelta, Berlin, Germany) and the ReCiPe® midpoint (H) v.1.12 method, the environmental impacts of the traditional Italian farming technique, carried out entirely offshore in longlines, and the alternative option, in which the oyster seed pre-fattening phase was carried out in the lagoon, were calculated and compared. The results show that replacing the current pre-fattening phase with pre-fattening in a lagoon reduces CO2 emissions by approximately 12% and all other impact categories by approximately 9%. In addition, non-recyclable plastic materials and fuel consumption emerged as the main environmental hotspots.

Life Cycle Assessment (LCA) of Two Different Oyster (Crassostrea gigas) Farming Strategies in the Sacca di Goro, Northern Adriatic Sea, Italy

Daniela Summa
Primo
Writing – Original Draft Preparation
;
Edoardo Turolla
Secondo
Conceptualization
;
Mattia Lanzoni
Writing – Review & Editing
;
Elena Tamisari
Methodology
;
Giuseppe Castaldelli
Penultimo
Project Administration
;
Elena Tamburini
Ultimo
Project Administration
2023

Abstract

The Pacific oyster Crassostrea gigas is one of the world’s most cultivated and prized molluscs. Alt-hough it is usually considered a luxury product, it meets all the requirements to be included in a sustainable diet, and its production and consumption have great potential for growth in the coming years. Oyster farming is a worldwide activity, with China and France as the main producers, but recently, the possibility of implementing the Italian production, mainly focused on clams and mussels, has been considered an interesting issue, especially due to the growing local and global demand. The present study has been carried out by collecting data from the Sacca di Goro, north-east Italy, the most important national mollusc farming area. Life cycle assessment (LCA) methodology was applied to two different farming scenarios in order to improve the overall sus-tainability of the process. Using OpenLCA™ software (GreenDelta, Berlin, Germany) and the ReCiPe® midpoint (H) v.1.12 method, the environmental impacts of the traditional Italian farming technique, carried out entirely offshore in longlines, and the alternative option, in which the oyster seed pre-fattening phase was carried out in the lagoon, were calculated and compared. The results show that replacing the current pre-fattening phase with pre-fattening in a lagoon reduces CO2 emissions by approximately 12% and all other impact categories by approximately 9%. In addition, non-recyclable plastic materials and fuel consumption emerged as the main environmental hotspots.
2023
Summa, Daniela; Turolla, Edoardo; Lanzoni, Mattia; Tamisari, Elena; Castaldelli, Giuseppe; Tamburini, Elena
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2510311
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact