Simple Summary The introduction of immune checkpoint inhibitors has represented a milestone in cancer treatment. Despite PD-L1 expression being the standard biomarker used before the start of therapy, there is still a strict need to identify complementary non-invasive biomarkers in order to better select patients. In this context, radiomics is an emerging approach for examining medical images and clinical data by capturing multiple features hidden from human eye and is potentially able to predict response assessment and survival in the course of immunotherapy. We reviewed the available studies investigating the role of radiomics in cancer patients, focusing on non-small cell lung cancer treated with immune checkpoint inhibitors. Although preliminary research shows encouraging results, different issues need to be solved before radiomics can enter into clinical practice. Immune checkpoint inhibitors (ICI) have demonstrated encouraging results in terms of durable clinical benefit and survival in several malignancies. Nevertheless, the search to identify an "ideal" biomarker for predicting response to ICI is still far from over. Radiomics is a new translational field of study aiming to extract, by dedicated software, several features from a given medical image, ranging from intensity distribution and spatial heterogeneity to higher-order statistical parameters. Based on these premises, our review aims to summarize the current status of radiomics as a potential predictor of clinical response following immunotherapy treatment. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2021 were selected, comprising those that explored computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for radiomic analyses in the setting of ICI. Several studies have demonstrated the potential applicability of radiomic features in the monitoring of the therapeutic response beyond the traditional morphologic and metabolic criteria, as well as in the prediction of survival or non-invasive assessment of the tumor microenvironment. Nevertheless, important limitations emerge from our review in terms of standardization in feature selection, data sharing, and methods, as well as in external validation. Additionally, there is still need for prospective clinical trials to confirm the potential significant role of radiomics during immunotherapy.

The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria

Urso L.;
2022

Abstract

Simple Summary The introduction of immune checkpoint inhibitors has represented a milestone in cancer treatment. Despite PD-L1 expression being the standard biomarker used before the start of therapy, there is still a strict need to identify complementary non-invasive biomarkers in order to better select patients. In this context, radiomics is an emerging approach for examining medical images and clinical data by capturing multiple features hidden from human eye and is potentially able to predict response assessment and survival in the course of immunotherapy. We reviewed the available studies investigating the role of radiomics in cancer patients, focusing on non-small cell lung cancer treated with immune checkpoint inhibitors. Although preliminary research shows encouraging results, different issues need to be solved before radiomics can enter into clinical practice. Immune checkpoint inhibitors (ICI) have demonstrated encouraging results in terms of durable clinical benefit and survival in several malignancies. Nevertheless, the search to identify an "ideal" biomarker for predicting response to ICI is still far from over. Radiomics is a new translational field of study aiming to extract, by dedicated software, several features from a given medical image, ranging from intensity distribution and spatial heterogeneity to higher-order statistical parameters. Based on these premises, our review aims to summarize the current status of radiomics as a potential predictor of clinical response following immunotherapy treatment. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2021 were selected, comprising those that explored computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for radiomic analyses in the setting of ICI. Several studies have demonstrated the potential applicability of radiomic features in the monitoring of the therapeutic response beyond the traditional morphologic and metabolic criteria, as well as in the prediction of survival or non-invasive assessment of the tumor microenvironment. Nevertheless, important limitations emerge from our review in terms of standardization in feature selection, data sharing, and methods, as well as in external validation. Additionally, there is still need for prospective clinical trials to confirm the potential significant role of radiomics during immunotherapy.
2022
Castello, A.; Castellani, M.; Florimonte, L.; Urso, L.; Mansi, L.; Lopci, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2509470
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact