Fused Deposition Modeling (FDM) or Fused Filament Fabrication (FFF) is the most popular 3D printing technique for thermoplastics. Initially used to produce prototypes of limited size, FDM can also be used for small-scale production and parts of larger size. In this case, a single screw extruder is recommended, fed with polymer pellets and equipped with a wider nozzle. The main advantages are higher flow rates, which in turn reduce the printing time, and greater versatility in terms of available materials at a lower price. The most common materials are also used in this Ph.D. thesis and are poly-lactic acid (PLA) and acrylonitrile butadiene styrene (ABS). When using FDM for structural applications, the mechanical properties are lower than those of parts obtained by injection molding, due to the inevitable presence of voids and poor filament-to-filament welding properties. The goal of this Ph.D. project is to study the mechanical properties of 3D-printed parts, and possibly to find ways to improve them. Characterization strategies using different materials and techniques were employed in order to measure the mechanical properties of the materials. In the first part of the work, an experimental 3D printer was developed and built. It is completely open-source and fully customizable with a build volume of 700mm x 700mm x 900mm in X, Y, and Z, respectively. This was used to print some samples and can be used as a test bench for future developments. In the second part, the mechanical properties in bending of 3D-printed parts as a function of the bead volume were investigated, using a semicrystalline PLA as a model material. Three thermocouples were placed within the specimen during printing, and showed that bead size influenced crystallinity through a complex thermal history that is consequent of the printing process. Such differences in crystallinity distribution affected the mechanical properties directly: unexpectedly, though, more amorphous specimens exhibited higher mechanical properties, with the exception of stiffness. In the third part, 3D-printed specimens were printed and characterized in tension using PLA filled with wood fibers as a model material. Young’s modulus and strength of 3D-printed specimens were measured and successfully modeled using Classical Lamination Theory (CLT). Characterization started from unidirectional specimens, and then moved to different quasi-isotropic lay-ups that were tested for CLT validation. Predicted values were in good agreement with the measured ones, especially if a contour line correction was applied. In the last part two novel post-process methods were described and tested for mechanical properties improvement. The first consists of compaction and remelting within a mold made of fine salt. Mechanical properties in tension were measured, using wood flour-filled polyester as a model material. Void reduction and an enhancement of the quality of bead-to-bead welding were found. Despite the longitudinal properties had a very limited increase, the transversal properties increased significantly, reaching the longitudinal ones, thus leading to a more isotropic behavior. This process, though, has limitations, such as dimensional distortion and a reduction in the thickness of the samples, which is proportional to the eliminated porosity. The second post-process method is a copper electroplating process that must be preceded by a treatment to make the material electroconductive, and this consisted of a thin layer polypyrrole deposition. To evaluate the effectiveness, ABS samples were used. Mechanical properties in bending were measured and a significant increase in the rigidity and the maximum sustainable load was found. However, this technique also has disadvantages, such as non-uniform plating and a significant increase in weight, especially for small parts.

Fused Deposition Modeling (FDM) o Fused Filament Fabrication (FFF) è la tecnica di stampa 3D più diffusa per materiali termoplastici. Se utilizzata per produzioni di piccola scala o parti di grandi dimensioni è consigliato l’uso di un estrusore monovite, alimentato a pellet e dotato di un ugello più largo. I principali vantaggi sono portate più elevate, che riducono i tempi di stampa, e una maggiore versatilità in termini di materiali disponibili a un prezzo inferiore. I materiali più comuni sono utilizzati anche in questa tesi di dottorato e sono l'acido polilattico (PLA) e l'acrilonitrile butadiene stirene (ABS). Quando si utilizza la stampa 3D a filamento per applicazioni strutturali, le proprietà meccaniche sono inferiori a quelle delle parti ottenute per stampaggio ad iniezione, a causa dell'inevitabile presenza di vuoti e delle scarse proprietà di saldatura tra i filamenti deposti. L'obiettivo è studiare le proprietà meccaniche delle parti stampate e trovare nuovi metodi per migliorarle. Sono state impiegate strategie di caratterizzazione che utilizzano diversi materiali e tecniche per misurare le proprietà meccaniche dei materiali. Nella prima parte del lavoro è stata realizzata una stampante 3D sperimentale, open source e con un volume di costruzione di 700 mm x 700 mm x 900 mm rispettivamente in X, Y e Z. Questa è stata utilizzata per stampare alcuni campioni e può essere utilizzata come banco prova per sviluppi futuri. Nella seconda parte, sono state studiate le proprietà meccaniche a flessione delle parti stampate in 3D in funzione del volume di filamento deposto, utilizzando un PLA semicristallino. La dimensione del filamento deposto ha influenzato la cristallinità grazie alla complessa storia termica dovuta proprio al processo di stampa, che è stata misurata inserendo tre termocoppie all'interno del campione durante la stampa. Tali differenze nella distribuzione di cristallinità hanno influenzato direttamente le proprietà meccaniche: inaspettatamente, i campioni più amorfi hanno proprietà meccaniche più elevate, ad eccezione della rigidità. Nella terza parte, i campioni sono stati stampati in 3D e testati a trazione utilizzando PLA caricato con fibre di legno. Il modulo di Young e resistenza dei campioni stampati sono stati misurati e modellati con successo secondo la teoria della laminazione classica (CLT). La caratterizzazione è iniziata da campioni unidirezionali per proseguire a diversi lay-up quasi isotropi che sono stati testati per la validazione della CLT. I valori calcolati erano in buon accordo con quelli misurati, specialmente se veniva applicata una correzione riguardo le linee di contorno. Nell'ultima parte sono stati descritti e testati due nuovi metodi di post-processo per il miglioramento delle proprietà meccaniche. Il primo consiste nella compattazione e rifusione all'interno di uno stampo di sale fino. Sono state misurate le proprietà meccaniche a trazione, utilizzando un poliestere caricato con farina di legno. Sono stati riscontrati una riduzione dei vuoti e un miglioramento della qualità della saldatura tra i filamenti deposti. Le proprietà trasversali sono aumentate significativamente, raggiungendo quelle longitudinali, portando ad un comportamento più isotropo. Questo processo ha dei limiti, come la distorsione dimensionale e la riduzione dello spessore dei campioni, proporzionale alla porosità eliminata. Il secondo metodo di post-processo è un processo di elettroplaccatura di rame, preceduto da un trattamento per rendere il materiale elettroconduttivo attraverso una deposizione di un sottile strato di polipirrolo. Sono state misurate le proprietà meccaniche a flessione di campioni stampati in ABS e si è trovato un aumento significativo della rigidità e del carico massimo sostenibile. Tuttavia, questa tecnica presenta degli svantaggi, come la placcatura non uniforme e un notevole aumento di peso, soprattutto per parti di piccole dimensioni.

Mechanical Properties Characterization and Improvement of Fused-Filament-Fabricated Parts

MALAGUTTI, Lorenzo
2023

Abstract

Fused Deposition Modeling (FDM) or Fused Filament Fabrication (FFF) is the most popular 3D printing technique for thermoplastics. Initially used to produce prototypes of limited size, FDM can also be used for small-scale production and parts of larger size. In this case, a single screw extruder is recommended, fed with polymer pellets and equipped with a wider nozzle. The main advantages are higher flow rates, which in turn reduce the printing time, and greater versatility in terms of available materials at a lower price. The most common materials are also used in this Ph.D. thesis and are poly-lactic acid (PLA) and acrylonitrile butadiene styrene (ABS). When using FDM for structural applications, the mechanical properties are lower than those of parts obtained by injection molding, due to the inevitable presence of voids and poor filament-to-filament welding properties. The goal of this Ph.D. project is to study the mechanical properties of 3D-printed parts, and possibly to find ways to improve them. Characterization strategies using different materials and techniques were employed in order to measure the mechanical properties of the materials. In the first part of the work, an experimental 3D printer was developed and built. It is completely open-source and fully customizable with a build volume of 700mm x 700mm x 900mm in X, Y, and Z, respectively. This was used to print some samples and can be used as a test bench for future developments. In the second part, the mechanical properties in bending of 3D-printed parts as a function of the bead volume were investigated, using a semicrystalline PLA as a model material. Three thermocouples were placed within the specimen during printing, and showed that bead size influenced crystallinity through a complex thermal history that is consequent of the printing process. Such differences in crystallinity distribution affected the mechanical properties directly: unexpectedly, though, more amorphous specimens exhibited higher mechanical properties, with the exception of stiffness. In the third part, 3D-printed specimens were printed and characterized in tension using PLA filled with wood fibers as a model material. Young’s modulus and strength of 3D-printed specimens were measured and successfully modeled using Classical Lamination Theory (CLT). Characterization started from unidirectional specimens, and then moved to different quasi-isotropic lay-ups that were tested for CLT validation. Predicted values were in good agreement with the measured ones, especially if a contour line correction was applied. In the last part two novel post-process methods were described and tested for mechanical properties improvement. The first consists of compaction and remelting within a mold made of fine salt. Mechanical properties in tension were measured, using wood flour-filled polyester as a model material. Void reduction and an enhancement of the quality of bead-to-bead welding were found. Despite the longitudinal properties had a very limited increase, the transversal properties increased significantly, reaching the longitudinal ones, thus leading to a more isotropic behavior. This process, though, has limitations, such as dimensional distortion and a reduction in the thickness of the samples, which is proportional to the eliminated porosity. The second post-process method is a copper electroplating process that must be preceded by a treatment to make the material electroconductive, and this consisted of a thin layer polypyrrole deposition. To evaluate the effectiveness, ABS samples were used. Mechanical properties in bending were measured and a significant increase in the rigidity and the maximum sustainable load was found. However, this technique also has disadvantages, such as non-uniform plating and a significant increase in weight, especially for small parts.
MOLLICA, Francesco
TRILLO, Stefano
File in questo prodotto:
File Dimensione Formato  
Mechanical Properties Characterization and Improvement of Fused-Filament-Fabricated Parts.pdf

accesso aperto

Descrizione: Mechanical Properties Characterization and Improvement of Fused-Filament-Fabricated Parts
Tipologia: Tesi di dottorato
Licenza: DRM non definito
Dimensione 7.79 MB
Formato Adobe PDF
7.79 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2507892
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact