A more sustainable global mobility system in which Internal Combustion Engine (ICE) vehicles are replaced by electric vehicles (EVs) powered by lithium-ion batteries (LiBs), taking into account the existing, or inferred, resource, is still possible? The present study aims at providing an answer to this question, through the design of an innovative compartmental model. Model scenarios have been considered accounting for three different estimates of the resource, i.e. the declared reserves, the hypothesized resources, and the full beneficiation of dissolved Li in the oceans. Input data were provided from the historical data of Li primary production, EVs production and recycling rates. The replacement of the ICE vehicles fleet appears possible only under extreme, unrealistic situations, unless the Li “stored” in the oceans is considered exploitable. The main viable policies, i.e. the optimisation of the resource share (almost entirely devoted to mobility issues) and of recycling strategies (pushed up to >90 %) have a modest effect on the achievement of fleet replacement. The total amount of geological lithium resources results as the main limiting factor for the complete transition to EVs. According to the developed model, the peak of production would occur between 2078 and 2130, unless seawater Li is accounted for. The future of the global mobility in a resource-constrained world should be driven toward a model based on the service rather than the individual property of vehicles. Planning a total number of electric vehicles able to assure long term sustainability will be also highly relevant.

Long term lithium availability and electric mobility: What can we learn from resource assessment?

Di Benedetto, Francesco
Penultimo
;
2023

Abstract

A more sustainable global mobility system in which Internal Combustion Engine (ICE) vehicles are replaced by electric vehicles (EVs) powered by lithium-ion batteries (LiBs), taking into account the existing, or inferred, resource, is still possible? The present study aims at providing an answer to this question, through the design of an innovative compartmental model. Model scenarios have been considered accounting for three different estimates of the resource, i.e. the declared reserves, the hypothesized resources, and the full beneficiation of dissolved Li in the oceans. Input data were provided from the historical data of Li primary production, EVs production and recycling rates. The replacement of the ICE vehicles fleet appears possible only under extreme, unrealistic situations, unless the Li “stored” in the oceans is considered exploitable. The main viable policies, i.e. the optimisation of the resource share (almost entirely devoted to mobility issues) and of recycling strategies (pushed up to >90 %) have a modest effect on the achievement of fleet replacement. The total amount of geological lithium resources results as the main limiting factor for the complete transition to EVs. According to the developed model, the peak of production would occur between 2078 and 2130, unless seawater Li is accounted for. The future of the global mobility in a resource-constrained world should be driven toward a model based on the service rather than the individual property of vehicles. Planning a total number of electric vehicles able to assure long term sustainability will be also highly relevant.
2023
Sanginesi, Francesco; Millacci, Giulia; Giaccherini, Andrea; Buccianti, Antonella; Fusi, Lorenzo; Di Benedetto, Francesco; Pardi, Luca
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0375674223000596-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2507570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact