We study a three-wave truncation of the high-order nonlinear Schrdinger equation for deep-water waves (also named Dysthe equation). We validate the model by comparing it to numerical simulation; we distinguish the impact of the different fourth-order terms and classify the solutions according to their topology. This allows us to properly define the temporary spectral upshift occurring in the nonlinear stage of Benjamin-Feir instability and provides a tool for studying further generalizations of this model.

Recurrence in the high-order nonlinear Schrödinger equation: A low-dimensional analysis

Armaroli, Andrea;
2017

Abstract

We study a three-wave truncation of the high-order nonlinear Schrdinger equation for deep-water waves (also named Dysthe equation). We validate the model by comparing it to numerical simulation; we distinguish the impact of the different fourth-order terms and classify the solutions according to their topology. This allows us to properly define the temporary spectral upshift occurring in the nonlinear stage of Benjamin-Feir instability and provides a tool for studying further generalizations of this model.
2017
Armaroli, Andrea; Brunetti, Maura; Kasparian, Jérôme
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2506531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact